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Babylonian Mathematics

Dr. R. L. Herman

1 Babylonian Numerals

The Babylonians numerals are shown in Table 1. They were probably created using a stylus against a wet
clay tablet.

1 𒁹
2 𒈫
3 𒐈
4 𒃻
5 𒐊
6 𒐋
7 𒐌
8 𒐍
9 𒐎
10 𒌋
11 𒌋𒁹
12 𒌋𒈫
13 𒌋𒐈
14 𒌋𒃻
15 𒌋𒐊
16 𒌋𒐋
17 𒌋𒐌
18 𒌋𒐍
19 𒌋𒐎
20 𒌋𒌋
21 𒌋𒌋𒁹
22 𒌋𒌋𒈫
23 𒌋𒌋𒐈
24 𒌋𒌋𒃻
25 𒌋𒌋𒐊

26 𒌋𒌋𒐋
27 𒌋𒌋𒐌
28 𒌋𒌋𒐍
29 𒌋𒌋𒐎
30 𒌍
31 𒌍𒁹
32 𒌍𒈫
33 𒌍𒐈
34 𒌍𒃻
35 𒌍𒐊
36 𒌍𒐋
37 𒌍𒐌
38 𒌍𒐍
39 𒌍𒐎
40 𒐏
41 𒐏𒁹
42 𒐏𒈫
43 𒐏𒐈
44 𒐏𒃻
45 𒐏𒐊
46 𒐏𒐋
47 𒐏𒐌
48 𒐏𒐍
49 𒐏𒐎
50 𒐐

51 𒐐𒁹
52 𒐐𒈫
53 𒐐𒐈
54 𒐐𒃻
55 𒐐𒐊
56 𒐐𒐋
57 𒐐𒐌
58 𒐐𒐍
59 𒐐𒐎
60 𒁹
61 𒁹 𒁹
62 𒁹 𒈫
63 𒁹 𒐈
64 𒁹 𒃻
65 𒁹 𒐊
66 𒁹 𒐋
67 𒁹 𒐌
68 𒁹 𒐍
69 𒁹 𒐎
70 𒁹 𒌋
71 𒁹 𒌋𒁹
72 𒁹 𒌋𒈫
73 𒁹 𒌋𒐈
74 𒁹 𒌋𒃻
75 𒁹 𒌋𒐊

76 𒁹 𒌋𒐋
77 𒁹 𒌋𒐌
78 𒁹 𒌋𒐍
79 𒁹 𒌋𒐎
80 𒁹 𒌋𒌋
81 𒁹 𒌋𒌋𒁹
82 𒁹 𒌋𒌋𒈫
83 𒁹 𒌋𒌋𒐈
84 𒁹 𒌋𒌋𒃻
85 𒁹 𒌋𒌋𒐊
86 𒁹 𒌋𒌋𒐋
87 𒁹 𒌋𒌋𒐌
88 𒁹 𒌋𒌋𒐍
89 𒁹 𒌋𒌋𒐎
90 𒁹 𒌍
91 𒁹 𒌍𒁹
92 𒁹 𒌍𒈫
93 𒁹 𒌍𒐈
94 𒁹 𒌍𒃻
95 𒁹 𒌍𒐊
96 𒁹 𒌍𒐋
97 𒁹 𒌍𒐌
98 𒁹 𒌍𒐍
99 𒁹 𒌍𒐎
100 𒁹 𒐏

Table 1: A table of Babylonian numerals from 1 to 100.

The Babylonians used base 60. So, the number 26, 008 = 7(60)2 +13(60)+ 28. In Babylonian numerals,
this would be written as 𒐌 𒌋𒐈 𒌋𒌋𒐍 using the numbers 7, 13, 28. For the number 7(60)2+28 = 25228 𒐌 𒌋𒌋𒐍
there is a space where the 13 used to be.



Problem 1: Show that

1. 424000 is 𒁹 𒐐𒐌 𒐏𒐋 𒐏 .

2. 21609 is 𒐋 𒐎 (Note the space).

3. 123456789 is 𒐎 𒌍𒁹 𒌍𒐈 𒌍𒐈 𒐎 .

4. In the YBC 7289 tablet the Babylonians approximated
√
2 by 𒁹 ; 𒌋𒌋𒃻 𒐐𒁹 𒌋 , where we placed the

equivalent of a decimal point as a semicolon. How good of an approximation is this?

5. Find the base ten equivalents of the two numbers a) 𒌋𒐌 𒃻 and b) 𒐏𒈫 .

We should note that going from the cuneiform numerals to base ten might not be so easy. The Babylo-
nians did not use decimal places. So, the numbers 7(60)2+13(60)+28 = 26, 008, 7(60)3+13(60)2+28(60) =
1, 560, 480, and 7 + 13

60 + 28
602 = 3251

450 are represented by 𒐌 𒌋𒐈 𒌋𒌋𒐍 .

2 Akkadian Tablet (1700 BCE)

In the paper “Sherlock Holmes in Babylon,” Amer. Math. Monthly 87 (1980), 335-345, C. Buck describes
Babylonian mathematics. He begins with a discussion of a clay tablet from 3700 years ago as shown in Table
2. There are four columns. You should convince yourself that this is a table of 9’s.

𒁹
𒈫
𒐈
𒃻
𒐊
𒐋
𒐌
𒐍
𒐎
𒌋
𒌋𒁹
𒌋𒈫

𒐎
𒌋𒐍
𒌋𒌋𒐌
𒌍𒐋
𒐏𒐊
𒐐𒃻
𒁹 𒐈
𒁹 𒌋𒈫
𒁹 𒌋𒌋𒁹
𒁹 𒌍
𒁹 𒌍𒐎
𒁹 𒐏𒐍

𒌋𒐈
𒌋𒃻
𒌋𒐊
𒌋𒐋
𒌋𒐌
𒌋𒐍
𒌋𒐎
𒌋𒌋
𒌍
𒐏
𒐐

𒁹 𒐐𒐌
𒈫 𒐋
𒈫 𒌋𒐊
𒈫 𒌋𒌋𒃻
𒈫 𒌍𒐈
𒈫 𒐏𒈫
𒈫 𒐐𒁹
𒐈
𒃻 𒌍
𒐋
𒐌 𒌍

Table 2: Table of 9’s.

As an example, the last entry in the first column is 12 = 𒌋𒈫 . The last entry in the second column is
9× 12 = 108 = 𒁹 𒐏𒐍 . Note that in base 60 we have 108 = 1(60) + 48. This is a one ( 𒁹 ) and 48 ( 𒐏𒐍 )
separated by a small pace. Buck introduces a slash notation to write this as 1/48.

It is easy to add in base 60. Buck gives the example 14/28/31 + 3/35/45 = 18/4/16.
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Problem 2

1. Verify that this is true by doing base 60 addition.

2. What is the decimal (base ten) equivalent?

3 Multiplication

Several multiplication tables have been found. Buck [1] also describes the use of a table of reciprocals that
could be used for carrying out division. Reciprocals are the sexagesimal numbers with which they multiply
to give 1. However,

Another method for multiplication relied on using tables of squares such as shown in Table 3. How can
a table of squares be useful? In modern notation, we see that

ab =
1

4

[
(a+ b)2 − (a− b)2

]
. (1)

Problem 3 Show that Equation (1) is true.

Let’s find the product 11× 14. Using Table 3, the formula gives

11(14) =
1

4

[
(11 + 14)2 − (11− 14)2

]
=

1

4
(252 − 32)

=
1

4
(10/25− 9) (base 60)

=
1

4
(10/16) (base 60)

=
1

4
(10(60) + 16) =

616

4
= 154. (2)

𒌋 𒁹 𒐏 𒌋𒐎 𒐋 𒁹
𒌋𒁹 𒈫 𒁹 𒌋𒌋 𒐋 𒐏
𒌋𒈫 𒈫 𒌋𒌋𒃻 𒌋𒌋𒁹 𒐌 𒌋𒌋𒁹
𒌋𒐈 𒈫 𒐏𒐎 𒌋𒌋𒈫 𒐍 𒃻
𒌋𒃻 𒐈 𒌋𒐋 𒌋𒌋𒐈 𒐍 𒐏𒐎
𒌋𒐊 𒐈 𒐏𒐊 𒌋𒌋𒃻 𒐎 𒌍𒐋
𒌋𒐋 𒃻 𒌋𒐋 𒌋𒌋𒐊 𒌋 𒌋𒌋𒐊
𒌋𒐌 𒃻 𒐏𒐎 𒌋𒌋𒐋 𒌋𒁹 𒌋𒐋
𒌋𒐍 𒐊 𒌋𒌋𒃻 𒌋𒌋𒐌 𒌋𒈫 𒐎

10 1/40 19 6/1
11 2/1 20 6/40
12 2/24 21 7/21
13 2/49 22 8/4
14 3/16 23 8/49
15 3/45 24 9/36
16 4/16 25 10/25
17 4/49 26 11/16
18 5/24 27 12/9

Table 3: Table of squares with Babylonian numerals in the left table and slash notation on the right side.
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Problem 4

Use Equation (1) to find the products:

1. 10× 12.

2. 9× 13.

4 Reciprocals

Babylonians did not have division, per se. Instead they used tables of reciprocals. We think of the reciprocal
x̄ of x as that number such that xx̄ = 1. Since the Babylonians did not have zeros or use decimal points,
then 1 = 𒁹 , 60 = 𒁹 , and 602 = 𒁹 would all appear the same on a clay tablet. So, a reciprocal would
actually satisfy xx̄ = 60n since 60n looks like 1. In Table 4 we list a few reciprocals.

Table of

x x̄ x x̄ x x̄ x x̄
2 0/30 8 7/30 16 3/45 30 2
3 0/20 9 6/40 18 3/20 32 1/52/30
4 0/15 10 6 20 3 36 1/40
5 0/12 12 5 24 2/30 40 1/30
6 0/10 15 4 25 2/24 45 1/20

Table 4: A Table of Reciprocals

If you wanted to divide 8 by 2, you could multiply by 1
2 instead of dividing. In the same way, one can

you would look up the reciprocal to 2 in Table 4, 0/30, and multiply 8 by it. So, 8(0/30) = 8× 30
60 = 240

60 = 4.

There are several missing reciprocals: 1
7 , 1

11 , 1
13 ,

1
17 ,

1
19 , . . . . These do not have a finite sexigesimal

representation. For example, we know 1
7 = .142857. We convert it to base 60 using repeated multiplications

by 60 and extracting the integer parts of the results.

60(.142857) = 8.5714285

60(.5714285) = 34.285714

60(.285714) = 17..142857

(3)

After a few steps, we see the pattern begin to repeat. In more modern base 60 notation, 1
7 = ..8341760.

Then, we have
1

7
=

8

60
+

34

602
+

17

603
+

8

604
+ · · · .

So, just using the first four terms, the representation differs from 1
7 after the sixth decimal place.

Problem 5

1. Divide 37 by 6.

2. What is the base 60 representation of 1
13 .
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5 Pythagorean Triples

Another interesting tablet from the time is the Plimpton 322 tablet shown in Figure 4. This tablet has a
listing of Pythagorean triples. The last column has a list of numbers from 1 to 15. Columns two and three
seem to be the hypotenuse, C, and one leg, B, of the right triangle shown in Figure 1. Recall from the
Pythagorean Theorem that

C2 = B2 +D2.

The triple (D,B,C) is called a Pythagorean triple.

We know from Euclid that Pythagorean triples are parametrized by the pair (a, b) as follows:

B = a2 − b2, C = a2 + b2, D = 2ab,

since
(a2 − b2)2 + (2ab)2 = (a2 + b2)2.

B = a2 − b2C = a2 + b2

D = 2ab

θ

Figure 1: Right triangle with columns two and three as sides B and C, respectively. Pythagorean triples are
known to have a parametrization denoted (a, b).

Some effort has gone into figuring out the entries on the tablet and making corrections. Buck describes
some of this in his paper1. As seen in Figure 4, there are also some missing entries. A cleaner transcription
is shown in Table 5. Buck discusses the gaps and notes a few errors. Is Figure 5 easier to read? Other
versions are seen in Figures 3 and 6.

In Table 5 we show Buck’s corrected values for the Plimpton 322 Tablet [1]. Column A gives the base
60 values for (B/D)2 with D2 = C2 −B2. The last two columns give the parameters2 (a, b).

Problem 6: Verify that row 7 of the Plimpton 322 Tablet gives a Pythagorean triple.

Buck then goes on to give an explanation of Column A. He suggests that this column is
(
B
D

)2
. Since

B < D, these numbers are less than one. Others suggest that Column A was
(
C
D

)2
, and that left missing

left part of the stone had 1’s. Since (
C

D

)2

= 1 +

(
B

D

)2

,

it does not matter.
1There have been several attempts to determine the purpose of this tablet. See Wikipedia.
2In row 11 there appears to be a problem which Buck explains using base 60. This is the familiar 3, 4, 5 triangle.
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Figure 2: A sketch of the Plimpton 322 Tablet.

[59]/0/15 1/59 2/49 ki 1
[56/56]/58/14/50/6/15 56/7 1/20/25 ki 2
[55/7]/41/15/33/45 1/16/41 1/50/49 ki 3
53/10/29/32/52/16 3/31/49 5/9/1 ki 4

48/54/1/40 1/5 1/37 ki [5]
47/6/41/40 5/19 8/1 [ki] [6]

43/11/56/28/26/40 38/11 59/1 ki 7
41/33/45/14/3/45 13/19 20/49 ki 8

38/33/36/36 8/1 12/49 ki 9
35/10/2/28/27/24/26/40 1/22/41 2/16/1 ki 10

33/45 45 1/15 ki 11
29/21/54/2/15 27/59 48/49 ki 12

27/0/3/45 2/41 4/49 ki 13
25/48/51/35/6/40 29/31 53/49 ki 14

23/13/46/40 56 53 ki [15]

Table 5: A transcription of the tablet. Brackets indicate guesses.
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Figure 3: A sketch of the Plimpton 322 Tablet with arabic numerals base 60. The bars designate place
holders.

# A B C a b
1 59/0/15 119 169 12 5
2 56/56/58/14/50/6/15 3367 4825 64 27
3 55/7/41/15/33/45 4601 6649 75 32
4 53/10/29/32/52/16 12709 18541 125 54
5 48/54/1/40 65 97 9 4
6 47/6/41/40 319 481 20 9
7 43/11/56/28/26/40 2291 3541 54 25
8 41/33/45/14/3/45 799 1249 32 15
9 38/33/36/36 481 769 25 12
10 35/10/2/28/27/24/26/40 4961 8161 81 40
11 33/45 45 75 1 0.5 = 30
12 29/21/54/2/15 1679 2929 48 25
13 27/0/3/45 161 289 15 8
14 25/48/51/35/6/40 1771 3229 50 27
15 23/13/46/40 56 106 9 5

Table 6: Buck’s corrected values for the Plimpton 322 Tablet. The second column gives the base 60 values
for (B/D)2 with D2 = C2 −B2.
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Figure 4: Plimpton 322 Tablet.

Figure 5: Buck’s corrected values for the Plimpton 322 Tablet using Babylonian numerals [1].
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For example, 59/0/15 represents a number less than one. In base ten, we have

59/0/15 =
59

60
+

0

602
+

15

603
=

14161

14400
≈ .9834027778.

In Table 7 we show the decimal equivalents for column one of Table 5 and the values of
(
B
D

)2
= tan2 θ.

Note how good the approximations are. This suggests also that computing the exact fractions will give
exactly

(
B
D

)2
. Again, from row 1 we have B = 119 and C = 169. This gives B2 = 1192 = 14161 and

D2 = 1692 − 1192 = 14400. So, we have found that
(
B
D

)2
== 14161

14400 , which in base 60 is 59/0/15.

Problem 7: Verify row 6 in Table 7.

# A Decimal Value (B/D)
2

1 59/0/15 0.983402777777778 0.983402777777778
2 56/56/58/14/50/6/15 0.949158552088692 0.949158552088692
3 55/7/41/15/33/45 0.918802126736111 0.918802126736111
4 53/10/29/32/52/16 0.886247906721536 0.886247906721536
5 48/54/1/40 0.815007716049383 0.815007716049383
6 47/6/41/40 0.785192901234568 0.785192901234568
7 43/11/56/28/26/40 0.719983676268862 0.719983676268862
8 41/33/45/14/3/45 0.692709418402778 0.692709418402778
9 38/33/36/36 0.642669444444444 0.642669444444444
10 35/10/2/28/27/24/26/40 0.586122566110349 0.586122566110349
11 33/45 0.562500000000000 0.562500000000000
12 29/21/54/2/15 0.489416840277778 0.489416840277778
13 27/0/3/45 0.450017361111111 0.450017361111111
14 25/48/51/35/6/40 0.430238820301783 0.430238820301783
15 23/13/46/40 0.387160493827161 0.387160493827161

Table 7: Decimal equivalents for column one of Table 5 and (B/D)
2
.

6 The Diagonal of a Square

Another tablet that was found seems to be that of a student’s computation of the diagonal of a square
dating from 1800–1600 BCE. It is labeled as YBC7289 as shown on the left in Figure 6. Reading the etched
numbers, we have a square with sides of length 30. There are two rows of numbers along the diagonal as
shown on the right of Figure 6: In Buck’s notation, we have the numbers 1/24/51/10 and 42/25/35.

Problem 8: Show that

• The first set gives and approximation to
√
2.

• The second set gives the length of the diagonal.
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Figure 6: Tablet YBC7289 and it’s interpretation.
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