Projective Geometry

Fall 2023 - R. L. Herman

Perspective Drawing

- Art Perspective Drawing
- Before Renaissance- no illusion of depth and space.
- 13th century Italian masters used shadowing.
- Mathematics of perspective

Filippo Brunelleschi (1377-1446) - Architect

- First to describe linear perspective.
- Experimented (1415-1420) using a panel with a grid of squares and a plaque with a hole at eye level.
- Drawings of the Baptistry in Florence, Place San Giovanni and other Florence landmarks.
- His method was studied by Alberti,
 Da Vinci & della Francesca's The Perspective of Painting.

Leon Battista Alberti (1404-1472)

- Alberti's Veil
 Transparent cloth on a frame,
 Good for actual scenes not imaginary ones.
- Basic principles:
 - 1. A straight line in perspective remains straight.
 - 2. Parallel lines either remain parallel or converge to a point.
- Drawing a square-tiled floor, solved by Alberti (1436).

 Align nonhorizontal lines equally along base, converging to one point on the horizon.

- Align nonhorizontal lines equally along base, converging to one point on the horizon.
- Choose one tile.

- Align nonhorizontal lines equally along base, converging to one point on the horizon.
- Choose one tile.
- Extend diagonal.

- Align nonhorizontal lines equally along base, converging to one point on the horizon.
- Choose one tile.
- Extend diagonal.
- Intersections determine the horizontals.

- Align nonhorizontal lines equally along base, converging to one point on the horizon.
- Choose one tile.
- Extend diagonal.
- Intersections determine the horizontals.

- Align nonhorizontal lines equally along base, converging to one point on the horizon.
- Choose one tile.
- Extend diagonal.
- Intersections determine the horizontals.

- Align nonhorizontal lines equally along base, converging to one point on the horizon.
- Choose one tile.
- Extend diagonal.
- Intersections determine the horizontals.

Desargues' Projective Geometry¹

- Mathematics behind Alberti's Veil:
 Family of lines (light rays) through a point (eye) plus a plane (veil).
- Recall Pappus' Theorem:
 A₁, A₂, A₃, collinear;
 B₁, B₂, B₃, collinear;
 then, so are C₁, C₂, C₃.
- Blaise Pascal (1623-1662) at 16 generalized to conics.
- Desargues (1640) **Projective Geometry** only relies on a straight edge.
- Note: Piero della Francesca (c. 1415-1492) formalized rules of perspective, mid-1470s.

Figure 2: Pappus' and Pascal's Theorems.

 A_3

¹Two centuries ahead of his time.

- Architect in Paris, Lyon and engineer.
- Desargues' Theorem in appendix of book on perspective, by friend Abraham Bosse (1602–1676).
 Two triangles are a) in perspective axially if and only if they are b) in perspective centrally.

- Architect in Paris, Lyon and engineer.
- Desargues' Theorem in appendix of book on perspective, by friend Abraham Bosse (1602–1676).
 Two triangles are a) in perspective axially if and only if they are b) in perspective centrally.
- b) Extend Aa, Bb, Cc
 center of perspectivity P.

- Architect in Paris, Lyon and engineer.
- Desargues' Theorem in appendix of book on perspective, by friend Abraham Bosse (1602–1676).
 Two triangles are a) in perspective axially if and only if they are b) in perspective centrally.
- b) Extend Aa, Bb, Cc center of perspectivity P.

- Architect in Paris, Lyon and engineer.
- Desargues' Theorem in appendix of book on perspective, by friend Abraham Bosse (1602–1676).
 Two triangles are a) in perspective axially if and only if they are b) in perspective centrally.
- b) Extend Aa, Bb, Cc
 center of perspectivity P.
- a) Extend pairs, AC-ac, AB-ab, etc.

- Architect in Paris, Lyon and engineer.
- Desargues' Theorem in appendix of book on perspective, by friend Abraham Bosse (1602–1676).
 Two triangles are a) in perspective axially if and only if they are b) in perspective centrally.
- b) Extend Aa, Bb, Cc
 center of perspectivity P.
- a) Extend pairs, AC-ac, AB-ab, etc.

- Architect in Paris, Lyon and engineer.
- Desargues' Theorem in appendix of book on perspective, by friend Abraham Bosse (1602–1676).
 Two triangles are a) in perspective axially if and only if they are b) in perspective centrally.
- b) Extend Aa, Bb, Cc center of perspectivity P.
- a) Extend pairs, AC-ac, AB-ab, etc.

- Architect in Paris, Lyon and engineer.
- Desargues' Theorem in appendix of book on perspective, by friend Abraham Bosse (1602–1676).
 Two triangles are a) in perspective axially if and only if they are b) in perspective centrally.
- b) Extend Aa, Bb, Cc center of perspectivity P.
- a) Extend pairs, AC-ac, AB-ab, etc.

- Architect in Paris, Lyon and engineer.
- Desargues' Theorem in appendix of book on perspective, by friend Abraham Bosse (1602–1676). Two triangles are a) in perspective axially if and only if they are b) in perspective centrally.
- b) Extend Aa, Bb, Cc center of perspectivity P.
- a) Extend pairs, AC-ac, AB-ab, etc.
- Points are collinear.

- Architect in Paris, Lyon and engineer.
- Desargues' Theorem in appendix of book on perspective, by friend Abraham Bosse (1602–1676). Two triangles are a) in perspective axially if and only if they are b) in perspective centrally.
- b) Extend Aa, Bb, Cc center of perspectivity P.
- a) Extend pairs, AC-ac, AB-ab, etc.
- Points are collinear.
- What if two sides are parallel?

- Architect in Paris, Lyon and engineer.
- Desargues' Theorem in appendix of book on perspective, by friend Abraham Bosse (1602–1676).
 Two triangles are a) in perspective axially if and only if they are b) in perspective centrally.
- b) Extend Aa, Bb, Cc
 center of perspectivity P.
- a) Extend pairs, AC-ac, AB-ab, etc.
- Points are collinear.
- What if two sides are parallel?
- Need Projective plane.

Invariance of the Cross Ratio

Lengths and angles are not preserved under projection.

But, for any four points on a line, $\frac{\overline{AC}}{\overline{BC}}:\frac{\overline{AD}}{\overline{BD}}$ is invariant. That is,

$$\frac{\overline{AC}}{\overline{BC}} : \frac{\overline{AD}}{\overline{BD}} = \frac{\overline{A'C'}}{\overline{B'C'}} : \frac{\overline{A'D'}}{\overline{B'D'}}.$$
History of Math

R. L. Herman

man Fall 2023

Projective Geometry Rebirth in 1800's.

Perspective

- 1. Parallel lines meet at a pt.
- 2. Lines map to lines.
- 3. Conics map to conics.

Example: Train tracks.

vanishing point horizon

History of Math

R. L. Herman

Fall 2023

One Point Perspective - Find the Vanishing Points

Two Point Perspective - Find the Vanishing Points

History of Math

Two Point Perspective - Find the Vanishing Points

History of Math

R. L. Herman

Two Point Perspective Vanishing Point(s)

Two Point Perspective Vanishing Point(s)

- Artists' use vanishing points.
- Pappus' Theorem Consider parallel lines A₁B₂, A₂B₁.

 Does the theorem hold?

- Artists' use vanishing points.
- Pappus' Theorem Consider parallel lines A₁B₂, A₂B₁.

 Does the theorem hold?

- Artists' use vanishing points.
- Pappus' Theorem Consider parallel lines A₁B₂, A₂B₁.

 Does the theorem hold?

- Artists' use vanishing points.
- Pappus' Theorem Consider parallel lines A₁B₂, A₂B₁.

 Does the theorem hold?
- Desargues line at infinity.

- Artists' use vanishing points.
- Pappus' Theorem Consider parallel lines A₁B₂, A₂B₁.

 Does the theorem hold?
- Desargues line at infinity.
- Look at a plane

- Artists' use vanishing points.
- Pappus' Theorem Consider parallel lines A₁B₂, A₂B₁.

 Does the theorem hold?
- Desargues line at infinity.
- Look at a plane

- Artists' use vanishing points.
- Pappus' Theorem Consider parallel lines A₁B₂, A₂B₁.

 Does the theorem hold?
- Desargues line at infinity.
- Look at a plane
- Add parallel lines.
 Where do they go?
- Line at Infinity
- Plane + line at infinity =
 Projective Plane

• Consider the real line, \mathbb{R} .

- ullet Consider the real line, \mathbb{R} .
- Add point at infinity, real projective line, RP¹.

- ullet Consider the real line, \mathbb{R} .
- Add point at infinity, real projective line, RP¹.
- Topologically a circle!

- ullet Consider the real line, $\mathbb R$.
- Add point at infinity, real projective line, RP¹.
- Topologically a circle!
- ullet We can map the circle to $\mathbb{R}.$

- ullet Consider the real line, \mathbb{R} .
- Add point at infinity, real projective line, RP¹.
- Topologically a circle!
- ullet We can map the circle to $\mathbb{R}.$

Intersection:
$$y = b$$
, $y = mx$: $x = \frac{b}{m}$.

History of Math

R. L. Herman

Fall 2023

13/19

- ullet Consider the real line, \mathbb{R} .
- Add point at infinity, real projective line, RP¹.
- Topologically a circle!
- ullet We can map the circle to $\mathbb{R}.$

Intersection:
$$y = b$$
, $y = mx$: $x = \frac{b}{m}$.

History of Math

R. L. Herman

Fall 2023

13/19

Homogeneous Coordinates

- Point on line: (x, y, z)
- All points on line map to (X, Y) in the plane.
- (X, Y) are called homogeneous coordinates.
- Points on line are multiples, $(x', y', z') = \lambda(x, y, z)$.
- Point on plane: Let $\lambda = \frac{1}{z}$. Then, $(x', y', z') = (\frac{x}{z}, \frac{y}{z}, 1)$, or

$$X = \frac{x}{z}, \quad Y = \frac{y}{z}.$$

Curves: Given Y = f(X), find (x, y, z)—surface.

- Curve in plane z = 1, $Y = X^2$.
- $\bullet \ \ X = \frac{x}{z}, \ Y = \frac{y}{z}.$
- Translates to

$$\frac{y}{z} = \left(\frac{x}{z}\right)^2.$$

- Multiply by z^2 .
- This is a surface in (x, y, z)-space,

$$x^2 = yz$$
.

Figure 3: Surface $x^2 = yz$.

Curves: Given Y = f(X), find (x, y, z)—surface.

- Curve in plane $z=1, Y=X^2$.
- $X = \frac{X}{2}, Y = \frac{y}{2}$.
- Translates to

$$\frac{y}{z} = \left(\frac{x}{z}\right)^2.$$

- Multiply by z^2 .
- This is a surface in (x, y, z)-space,

$$x^2 = yz$$
.

 Slicing with planes, like Alberti's veil, one gets projections of the curve.

Figure 3: Surface $x^2 = yz$.

Curves: Given Y = f(X), find (x, y, z)—surface.

- Curve in plane z = 1, $Y = X^2$.
- $\bullet \ \ X = \frac{x}{z}, \ Y = \frac{y}{z}.$
- Translates to

$$\frac{y}{z} = \left(\frac{x}{z}\right)^2.$$

- Multiply by z^2 .
- This is a surface in (x, y, z)-space,

$$x^2 = yz$$
.

 Slicing with planes, like Alberti's veil, one gets projections of the curve.

Figure 3: Surface $x^2 = yz$.

Projective Sphere: Extending \mathbb{RP}^1 .

- Map points on a plane to points on surface of unit sphere, S².
- Lines through South Pole uniquely intersect the plane and sphere.
- All points mapped except (0,0,0). This point can be mapped to the line at infinity.

Figure 4: Stereographic Projection

Looking into the Veil - Parabola Projected

Figure 5: Problems 8.4.2-8.4.4

History of Math R. L. Herman

Fall 2023

17/19

Looking into the Veil - Parabola Projected

Figure 5: Problems 8.4.2-8.4.4

History of Math R.

R. L. Herman Fall 2023

Viewing A Cubic in the Veil

Perspective Drawing

Looking at conics from a different perspective: The parabola $z=-x^2$ looks like an ellipse.

In the 1600's mathematicians had other mathematics to attend to. So, we return to geometry in the 1800's.