Vibrating Strings, Membranes and a Spherical Turkey

Fall 2022 - R. L. Herman

Table of contents

- 1. [The Vibrating String Controversy](#page-2-0)
- 2. [Joseph Fourier](#page-6-0)
- 3. ["Can One Hear the Shape of a Drum"](#page-8-0)
- 4. [Vibrations of Strings and Membranes](#page-11-0)
- 5. [And the Answer Is?](#page-24-0)
- 6. [How to Cook a Turkey](#page-28-0)
- 7. [Heat Equation](#page-31-0)

Chladni patterns on a listtledrum m Risset. Les instruments de l'orchest

History of Math R. L. Herman Fall 2022 1/47

Harmonics

- Pythagoras, Ptolemy.
- Galileo and Mersenne, pitch and frequency. Strings produce several tones.
- Joseph Sauveur, 1653-1716, acoustics. Introduced nodes, "harmonic."
- Johann Bernoulli, 1667-1748.
- Brook Taylor 1685-1731, fundamental.
- Johann Sebastian Bach Bach, 1685-1750.
- Hermann Helmholtz, 1821-1894, acoustics. *History of Math* R. L. Herman Fall 2022 2/47

The 1700s Debate - Mathematicians vs Physicists

- Jean le Rond d'Alembet, 1717-1783.
- Vibrating string equation and general solution, $y(x, t) = f(x + t) + q(x - t)$. BCs give $q = f$.
- Leonhard Euler's papers, 1748-9. More general equation with *c*, and $y(x, t) = f(x + ct) + q(x - ct)$.
- Claimed f from ICs. $y(x,t) =$ $\frac{1}{2}$ $(Y(x + ct) + Y(x - ct) + \frac{1}{c} \int_{x+ct}^{x-ct} V(s) ds).$
- Y, V are any curves *drawn by hand*.
- Daniel Bernoulli, 1709-1791, solutions are sums of harmonics, 1753:

$$
y(x) = A_1 \sin \frac{\pi x}{L} \cos \frac{\pi ct}{L} + A_2 \sin \frac{2\pi x}{L} \cos \frac{2\pi ct}{L} + \cdots = f(x + ct) + g(x - ct).
$$

\nR. L. Hermann Hall 2022 3/47

d'Alembert vs Euler

- Euler allowed corners.
- d'Alembert's first response *f* must be periodic, odd, differentiable. Introduced separation of variables.
- 1761 the attack! Use of physical arguments is prohibited.
- If slope discontinuous, then acceleration undefined.
- Euler responded 1762, 1765. For small displacement, the function at corner is infinitesimally close to differentiable.

d'Alembert, Euler vs Bernoulli

- d'Alembert did not believe a sum of harmonics.
- Euler sum not general enough snapped string.
- Bernoulli "Listen to the string."

They all missed general periodicity.

Joseph-Louis Lagrange

- In enters another math. physicist.
- Born Luigi de la Grange Tournier (1736-1813), in Italy.
- 1759, paper on sound propagation.
- Agreed mostly with Euler, not Bernoulli.
- Avoided wave equation. Used a discrete set of masses.

$$
y(x,t) = \frac{2}{L} \int_0^L dX Y(X) \left[\sin \frac{\pi X}{L} \sin \frac{\pi x}{L} \cos \frac{\pi ct}{L} + \sin \frac{2\pi X}{L} \sin \frac{2\pi x}{L} \cos \frac{2\pi ct}{L} + \dots \right]
$$

+
$$
\frac{2}{\pi c} \int_0^L dX V(X) \left[\sin \frac{\pi X}{L} \sin \frac{\pi x}{L} \cos \frac{\pi ct}{L} + \frac{1}{2} \sin \frac{2\pi x}{L} \sin \frac{2\pi x}{L} \cos \frac{2\pi ct}{L} + \dots \right]
$$

He almost discovered Fourier series in 1759. [Fourier was born, 1768.]

History of Math R. L. Herman Fall 2022 5/47

Jean-Baptiste Joseph Fourier (1768-1830)

- Besides studying the heat equation and series solutions:
- Organizer of French retreat from Egypt.
- Produced a multi-volume work on Egyptology.
- Almost forgotten in France but not in other places due to P. G. J. Dirichlet who wrote on Fourier series. His open problems led Cantor to set theory.

On to applications -

- Can you hear the shape of a drum?
- How long does it take to cook a turkey?

"Can One Hear the Shape of a Drum?"

- Kac, Mark (1966). Amer. Math. Monthly. 73, Part II: 1–23.
- Title due to Lipman Bers: "If you had perfect pitch, could you hear the shape of a drum?"
- \cdot Can the frequencies (eigenvalues) of a resonator (drum) determine its shape (geometry)?
- Entails features of applied mathematics.
- Historical connections from radiation theory.

Radiation Theory

- Hendrik Lorentz's (1910) 5 lectures on old/new physics. problems
- 4th Electromagnetic Radiation Theory.
- Compared vibrations to an organ pipe.
- The number of overtones in frequency range is independent of shape, proportional to volume.
- David Hilbert's prediction
- Hermann Weyl < 2 yrs

$$
N(\lambda) = \sum_{\lambda_n < \lambda} \sim \frac{|\Omega|}{2\pi} \lambda.
$$

Seek Harmonic Solutions, $[Recall e^{i\omega t} = cos \omega t + i sin \omega t.]$

 $u(r, t) = U(r)e^{i\omega t}$

of a Wave Equation, *u*(r*,t*)

$$
\frac{\partial^2 u}{\partial t^2} = c^2 \nabla^2 u.
$$

Helmholtz Equation

$$
\nabla^2 U = -k^2 U, \quad k^2 = \frac{\omega}{c}.
$$

Eigenvalues *∼* frequencies

Vibrations of a String

- Ex: Violin String.
- Harmonics, $u_n(x)$.
- Wavelength, $\lambda = \frac{2L}{n}$.
- Wave Speed, $c = \sqrt{\frac{T}{\mu}}$.
- Frequency, $f = n \frac{c}{2L}$.
- \cdot A $f = 440$ Hz, $L = 32$ cm. $c = 2Lf = 280$ m/s.
- Nodes, $u_n(x) = 0$

Figure 1: Plot of the eigenfunctions $u_n(x) = \sin \frac{n\pi x}{L}$ for $n = 1, 2, 3, 4$.

The one dimensional wave equation, given by

$$
\frac{\partial^2 u}{\partial^2 t} = c^2 \frac{\partial^2 u}{\partial^2 x}, \quad t > 0, \quad 0 \le x \le L,\tag{1}
$$

subject to the boundary conditions

$$
u(0,t) = 0, u(L,t) = 0, \quad t > 0,
$$

and the initial conditions

$$
u(x, 0) = f(x), u_t(x, 0) = g(x), \quad 0 < x < L.
$$

$$
u(x, t) = \sum_{n=1}^{\infty} [A_n \cos \omega_n t + B_n \sin \omega_n t] \sin \frac{n\pi x}{L}, \qquad (2)
$$

where $\omega_n = \frac{n\pi c}{L}$.

- Membrane Problems.
	- Rectangular Circular Elliptical Irregular
- Solve Helmholtz Equations

Normal Modes and Frequencies of Oscillation Eigenvalues of Laplace Operator, $\nabla^2 u = -\lambda u$.

Vibrations of a Rectangular Membrane

Boundary-value problem

$$
u_{tt} = c^2 (u_{xx} + u_{yy}), \quad t > 0, 0 < x < L, 0 < y < H,
$$
 (3)

$$
u(0, y, t) = 0, \quad u(L, y, t) = 0, \quad t > 0, \quad 0 < y < H,
$$

$$
u(x, 0, t) = 0, \quad u(x, H, t) = 0, \quad t > 0, \quad 0 < x < L,
$$

$$
u(x, y, t) = \sum_{n,m} (a_{nm} \cos \omega_{nm} t + b_{nm} \sin \omega_{nm} t) \sin \frac{n \pi x}{L} \sin \frac{m \pi y}{H}.
$$

History of Math R. L. Herman Fall 2022 14/47

Nodes of a Rectangular Membrane

$$
u_{nm}(x,y)=\sin\frac{n\pi x}{L}\sin\frac{m\pi y}{H}, \quad f=\frac{c}{2L}\sqrt{n^2+\alpha^2m^2}, \quad \alpha=\frac{L}{H}.
$$

$$
n = 1 \qquad n = 2 \qquad n = 3
$$

History of Math R. L. Herman Fall 2022 15/47

Vibrations of a Rectangular Membrane

Vibrations of a Circular Membrane

Nodes of a Circular Membrane

$$
u_{mn}(r,\theta) = J_m\left(\frac{j_{mn}}{a}r\right)\cos m\theta, \quad f_{mn} = \frac{j_{mn}c}{2\pi a}.
$$

History of Math R. L. Herman Fall 2022 18/47

Vibrations of a Circular Membrane

Rectangular and Circular Membrane Frequencies

Rectangular

Circular $a = \frac{L}{2}$

Circular $\pi a^2 = L^2$

Vibrations of an Elliptical Membrane

$$
\left[\frac{\partial^2}{\partial \xi^2} + \frac{\partial^2}{\partial \eta^2} + (kh)^2 (\cosh^2 \xi - \cos^2 \eta) \right] u(\xi, \eta) = 0.
$$

Vibrations of a Balloon

The wave equation takes the form

$$
u_{tt} = \frac{c^2}{r^2} Lu, \text{ where } LV_{\ell m} = -\ell(\ell+1)Y_{\ell m}
$$

for the spherical harmonics $Y_{\ell m}(\theta, \phi) = P_{\ell}^{m}(\cos \theta)e^{im\phi}$, The general solution is found as

$$
u(\theta, \phi, t) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \left[A_{\ell m} \cos \omega_{\ell} t + B_{\ell m} \sin \omega_{\ell} t \right] Y_{\ell m}(\theta, \phi),
$$

where $\omega_{\ell} = \sqrt{\ell(\ell+1)} \frac{c}{\rho}$ $\frac{8}{R}$.

Modes for a Vibrating Spherical Membrane (Balloon?)

Row 1: (1*,* 0)*,*(1*,* 1); Row 2: (2*,* 0)*,*(2*,* 1)*,*(2*,* 2); Row 3 (3*,* 0)*,*(3*,* 1)*,*(3*,* 2)*,*(3*,* 3)*.*

Vibrations of a Irregular Membranes

- Gordon, C., Webb, D., and Wolpert, S.(1992) - *You Cannot Hear the Shape of a Drum*
- Shapes on right have same set of frequencies isospectral drums.

Isospectral Drums

History of Math R. L. Herman Fall 2022 25/47

Spectra of Isospectral Drums

λ = 2*.*5379440*,* 3*.*6555097*,* 5*.*1755594*.*

Other Isospectral Drums

2250

Olivier Giraud and Koen Thas: Hearing shapes of drums: Mathematical and ...

FIG. 25. Pair 7₂. Sunada triple $G = PSL(3,2)$, $G_i = \langle a_i, b_i, c_i \rangle$, i $= 1, 2$, with $a_1 = (0\ 1)(2\ 5)$, $b_1 = (1\ 5)(3\ 4)$, $c_1 = (0\ 4)(1\ 6)$, a_2 $=(0, 4)(2, 3), b₂=(0, 6)(1, 4),$ and $c₂=(0, 2)(1, 5).$

FIG. 26. Pair 7₃. Sunada triple $G = PSL(3,2)$, $G_i = \langle a_i, b_i, c_i \rangle$, i $= 1, 2$, with $a_1 = (2 \ 5)(4 \ 6)$, $b_1 = (1 \ 5)(3 \ 4)$, $c_1 = (0 \ 4)(1 \ 6)$, a_2 $=(0, 3)(2, 4)$, $b_2=(0, 6)(1, 4)$, and $c_2=(0, 2)(1, 5)$.

FIG. 27. Pair 13₁. Sunada triple $G = PSL(3,3)$, $G_i = \langle a_i, b_i, c_i \rangle$, $i=1,2$, with $a_1=(0\ 12)(1\ 10)(3\ 5)(6\ 7)$, $b_1=(0\ 10)(2\ 9)(3\ 4)(5\ 8)$, $c_1 = (0, 4)(1, 6)(2, 11)(9, 12), a_2 = (0, 4)(2, 3)(6, 8)(9, 10), b_2 = (0, 1, 2)$ $(1.4)(5.11)(6.9)$, and $c_2=(0.10)(1.5)(2.7)(3.12)$.

FIG. 31. Pair 13, Sunada triple $G = PSL(3,3)$, $G_i = \langle a_i, b_i, c_i \rangle$, $i=1,2$, with $a_1=(1\ 7)(3\ 5)(4\ 9)(6\ 10)$, $b_1=(0\ 5)(1\ 2)(6\ 12)$ $(9\ 11), c_1 = (0\ 4)(1\ 6)(2\ 11)(9\ 12), a_2 = (0\ 9)(4\ 10)(6\ 8)(7\ 12), b_2$ $=(0 11)(1 8)(2 7)(3 4)$, and $c_2=(0 10)(1 5)(2 7)(3 12)$.

FIG. 32. Pair 13₆. Sunada triple $G = PSL(3,3)$, $G_i = \langle a_i, b_i, c_i \rangle$, $i=1,2$, with $a_1=(0\ 2)(1\ 7)(3\ 6)(5\ 10)$, $b_1=(0\ 6)(2\ 4)(3\ 8)(5\ 9)$, $c_1 = (0.5)(1.2)(6.12)(9.11), a_2 = (0.7)(3.11)(6.8)(9.12), b_2 = (0.8)$ $(1\ 10)(5\ 11)(7\ 9)$, and $c_2=(0\ 11)(1\ 8)(2\ 7)(3\ 4)$.

FIG. 33. Pair 13-, Sun+ada triple $G = PSL(3,3)$, $G_i = \langle a_i, b_i, c_i \rangle$. $i=1,2$, with $a_1=(0\ 2)(1\ 7)(3\ 6)(5\ 10)$, $b_1=(0\ 4)(2\ 3)(6\ 8)(9\ 10)$, $c_1 = (0.5)(1.2)(6.12)(9.11)$, $a_2 = (0.7)(3.11)(6.8)(9.12)$, $b₂$ $=(0\ 12)(1\ 1\ 0)(3\ 5)(6\ 7)$, and $c_2=(0\ 11)(1\ 8)(2\ 7)(3\ 4)$.

Can one hear the shape of a drum? -

No!

Membranes - Rectangular, circular, elliptical, irregular Never look at MATLAB logo the same way again - Why?

Chladni Plates

- Recall Sophie Germain.
- Ernst Chladni, 1756-1827, physicist and musician.
- In 1808, Chladni demonstrated vibrating plates at the Academy of Science in Paris.
- Napoleon, who attended, proposed a prize.
- Lagrange, Laplace and others felt that it was beyond reach.
- Germain only one to try.
- 1816, two more tries, first woman awarded Grand Prize in Mathematics of the Paris Academy of Sciences. *History of Math* R. L. Herman Fall 2022 29/47

1D Wave Equation

$$
u_{tt}=c^2u_{xx}
$$

1D Heat Equation

$$
u_t = k u_{xx}
$$

Developed by Joseph Fourier (1768-1830)

- Discovered in early 1807 and published later in 1822 Afterwards, diffusion processes studied outside of France. Lead to research in partial differential equations.
- Describes conduction and storage of heat (energy) in a body.
- Involves heat exchange with surroundings, conservation of energy.
- Leads to temperature changes inside body (diffusion).
- Uses the relation of heat energy to temperature (gradient), Fourier Law of Heat Conduction.

Heat Equation - Mathematics

Rate of change of heat energy = Flux in - Flux out $\frac{dQ}{dt} = \phi(x, t) - \phi(x + \Delta x, t).$

Flux density = conductivity \times temperature gradient $\phi = k \frac{dT}{dx}$.

Heat energy is proportional to temperature $Q = m cT$

 q = Heat energy per vol, u = temperature per vol

$$
\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2}, \quad D = \frac{k}{mc}.
$$

Thanksgiving Turkey!

- Native to North America.
- Introduced in Spain in 1500's.
- Benjamin Franklin national bird.
- Holiday bird in Europe in 1800's
	- replacing goose.
- Turkeys mostly walk.
- Harold McGee: Breast 155-160 F, Legs 180 F.
- Cooking times

Constant oven temp, diffusivity constant, Turkey plump Small - 20 min/lb + 20. Large - 15 min/lb + 15. t *∼ M*^{2/3}.

Example 1 If it takes 4 hours to cook a 10 pound turkey in a 350*^o* F oven, then how long would it take to cook a 20 pound turkey at the same conditions?

Figure 3: A Thanksgiving turkey - From 2015.

History of Math R. L. Herman Fall 2022 34/47

Panofsky Equation

• Pief Panofsky [SLAC Director Emeritus] *SLAC Today,* Nov 26, 2008 *<http://today.slac.stanford.edu/a/2008/11-26.htm>* For a stuffed turkey at 325*◦* F

$$
t = \frac{W^{2/3}}{1.5}
$$

vs. 30 minutes/lb.

- Also, check out WolframAlpha *[http://www.wolframalpha.](http://www.wolframalpha.com/input/?i=how+long+should+you+cook+a+turkey) [com/input/?i=how+long+should+you+cook+a+turkey](http://www.wolframalpha.com/input/?i=how+long+should+you+cook+a+turkey)*
- Musings of an Energy Nerd *[http://www.greenbuildingadvisor.com/blogs/dept/](http://www.greenbuildingadvisor.com/blogs/dept/musings/heat-transfer-when-roasting-turkey) [musings/heat-transfer-when-roasting-turkey](http://www.greenbuildingadvisor.com/blogs/dept/musings/heat-transfer-when-roasting-turkey)*

Consider a Spherical Turkey

Figure 4: The depiction of a spherical turkey.

History of Math R. L. Herman Fall 2022 36/47

Scaling a Spherically Symmetric Turkey

The baking follows the heat equation.

Rescale the coordinates (r, t) to (ρ, τ) :

 $r = \beta \rho$ and $t = \alpha \tau$.

Then, the heat equation rescales as

$$
u_\tau = \frac{\alpha}{\beta^2} \frac{k}{\rho^2} \frac{\partial}{\partial \rho} \left(\rho^2 \frac{\partial u}{\partial \rho} \right).
$$

- Invariance of heat equation implies $\alpha = \beta^2$.
- So, if the radius increases by a factor of *β,* then the time to cook the turkey increases by β^2 .

Example 1

If it takes 4 hours to cook a 10 pound turkey in a 350*^o* F oven, then how long would it take to cook a 20 pound turkey at the same conditions?

- The weight doubles *⇒* the volume doubles. $($ if density $=$ constant).
- \cdot *V* \propto *r*³ \Rightarrow *r* increases by factor: 2^{1/3}.
- Therefore, the time increases by a factor of $2^{2/3} \approx 1.587$.
- If 4 lb turkey takes 4 hrs, then a 20 lb turkey takes

$$
t = 4(2^{2/3}) = 2^{8/3} \approx 6.35
$$
 hours.

• In general, if the weight increases by a factor of *x,* then the time increases by $x^{2/3}$.

Egg Protein

Proteins in eggs can be used

- to help food set (e.g. egg custards),
- as a foam to add air and volume (e.g. sponge cakes),
- as an emulsifier (e.g. mayonnaise).

Two different major proteins, egg white (albumin) and egg yolk,

- Albumin starts coagulating at 63*^o*C
- Yolks start at 70*^o*C

Coagulation - protein unfolds, denaturation.

As heat increases the proteins rearrange and coagulate. Egg albumin turns from clear to cloudy white.

Peter Barnham, *The Science of Cooking* & Dr. Charles Williams of Exeter:

From [Khymos](http://blog.khymos.org/2009/04/09/towards-the-perfect-soft-boiled-egg/) *Towards the perfect soft boiled egg* by Martin Lersch, April 9th, 2009. See also [University of Oslo Applet](http://www.mn.uio.no/kjemi/tjenester/kunnskap/egg/)

50 eggs with $T_{\text{yolk}} = 63^{\circ}$ C, $T_{\text{water}} = 100^{\circ}$ C and $T_{\text{egg}} = 4^{\circ}$ C.

Egg Cooking Time - Formula

Given circumference or mass to reach to reach 63, 65 and 67*^o* C, respectively, at the yolk-white boundary with $T_{water} = 100^{\circ}$ C and $T_{egg} = 4^{\circ}$ C.

At sea level, boiling water is 100*^o* C. At higher altitudes, the boiling temperature of water is lowered 0*.*3 *^o* C for each additional 100 m above sea level.

Fast Fourier Transform - FFT

- One of top algorithms of 20th Century.
- Developed by Cooley and Tukey, 1965, to compute DFT (Discrete fourier transform)
- Some traced the ideas back to Gauss.
- Limit of Fourier series = Fourier Transform.
- Related to Laplace transform.

$$
F(k) = \int_{-\infty}^{\infty} f(x)e^{-ikx} dx,
$$

\n
$$
f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(k)e^{ikx} dk.
$$

\n
$$
F(s) = \int_{0}^{\infty} f(t)e^{-st} dt.
$$
\n(5)

Left for another course!

History of Math R. L. Herman Fall 2022 46/47

References for Drums

- Ħ S. J. Chapman, Drums that sound the same, *Amer. Math. Monthly* 102 (1995), 124-138.
- S. Tobin Driscoll, Eigenmodes of isospectral drums, SIAM Review 39 (1997), 1-17.
- F Carolyn Gordon, David Webb, Scott Wolpert, One cannot hear the shape of a drum, *Bull. Amer. Math. Soc.* 27 (1992), 134-138.
- Marc Kac, Can one hear the shape of a drum?, *Amer. Math.* E. *Monthly* 73 (1966), 1-23.
- S.
	- Cleve Moler, The MathWorks logo is an eigenfunction of the wave equation (2003).
- 歸 Lloyd N. Trefethen and Timo Betcke, Computed eigenmodes of planar regions (2005).