We verify some of the fundamental SVD properties using the built-in MATLAB command svd.
A = vander(1:5);
A = A(:,1:4)
A =
1 1 1 1 16 8 4 2 81 27 9 3 256 64 16 4 625 125 25 5
[U,S,V] = svd(A);
norm(U'*U - eye(5))
ans =
1.4850e-15
norm(V'*V - eye(4))
ans =
1.2551e-15
sigma = diag(S)
sigma =
6.9584e+02 1.8205e+01 1.6989e+00 2.1202e-01
[ norm(A) sigma(1) ]
ans =
6.9584e+02 6.9584e+02
[ cond(A) sigma(1)/sigma(4) ]
ans =
3.2820e+03 3.2820e+03