We construct a symmetric matrix with a known EVD.
n = 20;
lambda = (1:n)'; D = diag(lambda);
[V,~] = qr(randn(n)); % get a random orthogonal V
A = V*D*V';
The Rayleigh quotient of an eigenvector is its eigenvalue.
R = @(x) (x'*A*x)/(x'*x);
format long, R(V(:,7))
ans =
7.000000000000001
The Rayleigh quotient's value is much closer to an eigenvalue than its input is to an eigenvector. In this experiment, each additional digit of accuracy in the eigenvector estimate gives two more digits to the eigenvalue estimate.
delta = 1./10.^(1:4)';
quotient = 0*delta;
for k = 1:4
e = randn(n,1); e = delta(k)*e/norm(e);
x = V(:,7)+e;
quotient(k) = R(x);
end
table(delta,quotient)
ans = 4×2 table
deltaquotient
10.1000000000000007.037287925888177
20.0100000000000007.000312508257717
30.0010000000000007.000005646353830
40.0001000000000007.000000001396356