This function gets increasingly oscillatory near the right endpoint.
f = @(x) (x+1).^2.*cos((2*x+1)./(x-4.3));
fplot(f,[0 4],2000)
xlabel('x'), ylabel('f(x)') % ignore this line
title('A wiggly integrand')
Accordingly, the trapezoid rule is more accurate on the left half of the interval than on the right half.
n_ = 50*2.^(0:3)';
T_ = [];
for i = 1:length(n_)
n = n_(i);
T_(i,1) = trapezoid(f,0,2,n);
T_(i,2) = trapezoid(f,2,4,n);
end
left_val = integral(f,0,2,'abstol',1e-14,'reltol',1e-14);
right_val = integral(f,2,4,'abstol',1e-14,'reltol',1e-14);
table(n_,T_(:,1)-left_val,T_(:,2)-right_val,...
'variablenames',{'n','left_error','right_error'})
ans = 4×3 table
nleft_errorright_error
150-2.4911e-035.0423e-01
2100-6.2271e-049.6004e-02
3200-1.5568e-042.2547e-02
4400-3.8919e-055.5542e-03
Both the picture and the numbers suggest that more nodes should be used on the right half of the interval than on the left half.