We will use Householder reflections to produce a QR factorization of the matrix
A = magic(6);
A = A(:,1:4);
[m,n] = size(A);
Our first step is to introduce zeros below the diagonal in column 1. Define the vector
z = A(:,1);
Applying the Householder definitions gives us
v = z - norm(z)*eye(m,1);
P = eye(m) - 2/(v'*v)*(v*v'); % reflector
By design we can use the reflector to get the zero structure we seek:
P*z
ans =
5.6347e+01 8.1185e-16 6.9389e-15 9.7145e-17 1.1102e-15 4.4409e-16
Now we let
A = P*A
A =
5.6347e+01 1.6469e+01 3.0046e+01 3.9097e+01 8.8818e-16 2.9826e+01 3.6207e+00 1.9159e+01 5.3291e-15 -1.3464e+01 -3.2919e+01 2.9808e+00 0 2.2203e+01 2.3989e+01 1.2092e+01 8.8818e-16 -1.6740e+01 2.0733e-01 -6.4056e+00 0 3.3101e+01 2.4494e+01 1.0546e+01
We are set to put zeros into column 2. We must not use row 1 in any way, lest it destroy the zeros we just introduced. To put it another way, we can repeat the process we just did on the smaller submatrix
A(2:m,2:n)
ans =
2.9826e+01 3.6207e+00 1.9159e+01 -1.3464e+01 -3.2919e+01 2.9808e+00 2.2203e+01 2.3989e+01 1.2092e+01 -1.6740e+01 2.0733e-01 -6.4056e+00 3.3101e+01 2.4494e+01 1.0546e+01
z = A(2:m,2);
v = z - norm(z)*eye(m-1,1);
P = eye(m-1) - 2/(v'*v)*(v*v'); % reflector
We now apply the reflector to the submatrix.
A(2:m,2:n) = P*A(2:m,2:n)
A =
5.6347e+01 1.6469e+01 3.0046e+01 3.9097e+01 8.8818e-16 5.4220e+01 3.4880e+01 2.3167e+01 5.3291e-15 -1.8972e-15 -1.5665e+01 5.1928e+00 0 -2.6649e-15 -4.4630e+00 8.4443e+00 8.8818e-16 3.7311e-15 2.1658e+01 -3.6556e+00 0 -2.8145e-15 -1.7923e+01 5.1079e+00
We need two more iterations of this process.
for j = 3:n
z = A(j:m,j);
k = m-j+1;
v = z - norm(z)*eye(k,1);
P = eye(k) - 2/(v'*v)*(v*v');
A(j:m,j:n) = P*A(j:m,j:n);
end
We have now reduced the original to an upper triangular matrix using four orthogonal Householder reflections:
R = A
R =
5.6347e+01 1.6469e+01 3.0046e+01 3.9097e+01 8.8818e-16 5.4220e+01 3.4880e+01 2.3167e+01 5.3291e-15 -1.8972e-15 3.2491e+01 -8.9182e+00 0 -2.6649e-15 -1.3323e-15 7.6283e+00 8.8818e-16 3.7311e-15 2.6645e-15 -1.2114e-15 0 -2.8145e-15 -1.7764e-15 6.8057e-17