Here is the previously solved system.
A = [2 0 4 3 ; -4 5 -7 -10 ; 1 15 2 -4.5 ; -2 0 2 -13]
A =
2.0000e+00 0 4.0000e+00 3.0000e+00 -4.0000e+00 5.0000e+00 -7.0000e+00 -1.0000e+01 1.0000e+00 1.5000e+01 2.0000e+00 -4.5000e+00 -2.0000e+00 0 2.0000e+00 -1.3000e+01
b = [ 4; 9; 29; 40 ]
b =
4 9 29 40
It has a perfectly good solution, obtainable through LU factorization.
[L,U] = lufact(A);
x = backsub( U, forwardsub(L,b) )
x =
-3 1 4 -2
If we swap the second and fourth equations, nothing essential is changed, and MATLAB still finds the solution.
A([2 4],:) = A([4 2],:);
b([2 4]) = b([4 2]);
x = A\b
x =
-3.0000e+00 1.0000e+00 4.0000e+00 -2.0000e+00
However, LU factorization fails.
[L,U] = lufact(A);
L
L =
1.0000e+00 0 0 0 -1.0000e+00 1.0000e+00 0 0 5.0000e-01 Inf 1.0000e+00 0 -2.0000e+00 Inf NaN 1.0000e+00