Here is a simple trick for turning any square matrix into a symmetric one.
A = magic(4) + eye(4);
B = A+A'
B =
34 7 12 17 7 24 17 22 12 17 14 27 17 22 27 4
Picking a symmetric matrix at random, there is little chance that it will be positive definite. Fortunately, the built-in Cholesky factorization chol always detects this property. The following would cause an error if run:
R = chol(B)
There is a different trick for making an SPD matrix from (almost) any other matrix.
B = A'*A
B =
411 213 224 377 213 393 385 234 224 385 383 233 377 234 233 381
R = chol(B)
R =
20.273134932713294 10.506515184106888 11.049105170140576 18.596038612245525 0 16.811101649985090 15.996120561162783 2.297317496515087 0 0 2.245306645409047 -4.105343043039244 0 0 0 3.613286419735975
norm( R'*R - B )
ans =
7.051978355127676e-14
A word of caution: chol does not check symmetry; in fact, it doesn't even look at the lower triangle of the input matrix.
chol( triu(B) )
ans =
20.273134932713294 10.506515184106888 11.049105170140576 18.596038612245525 0 16.811101649985090 15.996120561162783 2.297317496515087 0 0 2.245306645409047 -4.105343043039244 0 0 0 3.613286419735975