
Spring 2022 Neuron Project

Project: Getting nervous?
This problem from the FNC authors was modified.

There are many important activator–inhibitor phenomena, in which two components
of a system essentially compete to pull it in different directions, leading to oscillatory
behavior. A classic example is the FitzHugh–Nagumo model of a neuron:

dv

dt
= v(a− v)(v − 1)− w + β,

dw

dt
= bv − cw,

(1)

where 0 < a < 1, and b, c, and β are positive constants. In physically realistic models, v
stands for an activation potential, and the peaks in v correspond to “firing” a signal. The
parameter β is analogous to an external current enhancing the growth of v, and it affects
the period of the oscillations.

A steady state of the ODE occurs when v′(t) = w′(t) = 0. These conditions imply a
nonlinear system of two equations for the two variables v and w.

You can see solutions of the model as an initial-value problem for two different values
of β in Figure 1, for which

a = 0.25, b = c = 0.02, v(0) = 0.1, w(0) = 0. (2)
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Figure 1: Solutions of the system (1) using the values in (2) and two different values of β.

Objective 1. Recreate Figure 1 using the single-neuron model (1) and the parameters
in (2). Then, on another graph, plot the two solutions in the (v, w) phase plane.
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From Figure 1 (top half) we can estimate the period of oscillation when β = 0.5.
Imagine drawing a horizontal line in Figure 1 with v = 1/2. For each oscillation, this
line makes two intersections with the graph of v(t) in blue: one when v is increasing, and
another when v is decreasing. Hence we can define one period of the oscillation as the
time between two similar kinds of intersections (i.e., both increasing or both decreasing).

We can extend the idea to get much more precision than a simple graphical estimate
allows. Note that whichever kind of intersection we pick (increasing or decreasing), there
is a particular value of w associated with it. So we can define the period T via the con-
ditions v(0) = v(T ) = 1/2, w(0) = w(T ). If we let the initial conditions be v(0) = 1/2,
w(0) = γ, then we can solve the model over [0, T ] and check the equations v(T ) = 1/2,
w(T ) = γ, which will be valid only when γ and T are chosen correctly. In other words, we
have defined a system of two equations f (x) = zero for the unknowns x1 = γ and x2 = T .

Objective 2. Find the oscillation period with a = 0.25, b = c = 0.02, and β = 0.5 by
using levenberg from the text on the system of equations described above. As always,
you must provide levenberg with the function f(x). You can find a good starting value for
levenberg using the graph you made for Objective 1.

Some oscillators exhibit an interesting phenomenon of synchronization. If the oscilla-
tors are coupled together, even weakly, they can adjust their individual natural frequencies
to oscillate together. This can occur with pendulums, fireflies, and neurons. To extend our
equations to two neurons, we use

dv1
dt

= v1(a− v1)(v1 − 1)− w1 + β1 + αv2,

dv2
dt

= v2(a− v2)(v2 − 1)− w2 + β2 + αv1,

dw1

dt
= bv1 − cw1,

dw2

dt
= bv2 − cw2,

(3)

Here, the excitation of vi occurs in response to the firing of the other neuron, with a
strength expressed as α > 0. Larger values of α mean stronger coupling.

Objective 3. Implement the model (3), using β1 = 0.5, β2 = 0.2, v1(0) = v2(0) = 0.25,
w1(0) = w2(0) = 0, and a, b, and c as given in (2). Make a 2 × 1 subplot grid. In the top
axes plot v1(t) and v2(t) over 0 ≤ t ≤ 1000 for α = 0.002, and in the bottom axes make
the same plot for the solution with α = 0.05. It should be clear that the top pair never
synchronize while the bottom pair quickly reach the same frequency.
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