1. Terminology

- · absolute accuracy
- · accurate digits
- · algorithm
- asymptotic
- · backward error
- · backward substitution
- bandwidth
- big-O notation
- · cancellation error
- Cholesky factorization
- · condition number
- double precision
- floating point numbers
- flops
- · forward substitution
- Frobenius norm
- Gaussian elimination
- hermitian
- · identity matrix
- · ill-conditioned
- induced matrix norm
- interpolation
- linear least squares problem
- · loss of precision
- LU factorization
- · machine epsilon
- · matrix condition number
- norm
- normal equations
- · ONC matrix
- orthogonal
- orthogonal matrix
- orthonormal
- overdetermined
- permutation matrix
- PLU factorization
- precision
- pseudoinverse
- · QR factorization
- relative accuracy

- residual
- row pivoting
- sparse
- · stability
- subtractive cancellation
- symmetric matrix
- symmetric positive definite matrix
- triangular matrix
- tridiagonal matrix
- unit triangular matrix
- unit vector
- · unstable algorithm
- · Vandermonde matrix

2. Algorithms

- · Horner's Method
- · forwardsub, backsub
- lufact, lu, qr

3. Be able to

- Write out floating point sets.
- Find closest floating point number to x.
- Find absolute or relative error.
- Find number of accurate digits.
- IEEE standard: single and double precision.
- Determine relative condition number.
- Use relative condition number.
- Stability of quadratic formula.
- · Relate backward error to stability.
- Interpolate small data set.
- Know matrix types and operations.
- Carry out Gaussian elimination.
- Use triangular systems.
- Explain key algorithms.
- Work with asymptotic limits.
- · Count flops.
- Determine vector and matrix norms.
- Discuss matrix conditioning.
- · Relate residual and backward error.
- Fit linear, exponential, power law data.
- Identify matrix types orthogonal, hermitian, symmetric, transpose, etc.