Chapter 14 Review

- 1. Functions of Several Variables
 - a. Domains and Ranges, dependent and independent variables
 - b. Level Curves f(x, y) = k.
 - c. Level Surfaces f(x, y, z) = k
- 2. Limits and Continuity
 - a. Existence and Computation of Limits
 - b. Continuity
- 3. Partial Derivatives $f_x = \frac{\partial f}{\partial x}$
 - a. Computation of First Order Partial Derivatives
 - b. Implicit Differentiation
 - c. Higher Order Derivatives f_{xx} , f_{xy} , f_{xxyz} , etc $f_{xy} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x}$
 - d. Clairaut's Theorem
 - e. Harmonic Functions $f_{xx} + f_{yy} = 0$
- 4. Tangent Planes and Linear Approximation
 - a. Equation of Tangent Plane Using Partial Derivatives

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

b. Linear Approximation (Linearization)

$$f(x, y) \approx f(a, b) + f_{y}(a, b)(x - a) + f_{y}(a, b)(y - b)$$

- c. Increments $\Delta z = f_x(a,b)\Delta x + f_y(a,b)\Delta y$
- d. Differentials $dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$
- e. Application of Linear Approximation, such as errors
- 5. The Chain Rule
 - a. Chain Rule for One or Two Independent Variables $\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}$
 - b. General Chain Rule
 - c. Tree Diagrams
 - d. Implicit Differentiation $\frac{\partial z}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}}$, etc
- 6. Directional Derivatives and the Gradient Vector
 - a. Directional Derivative $D_{\mathbf{u}}f\big|_{(x_0,y_0)} = \nabla f \cdot \mathbf{u}\big|_{(x_0,y_0)}$
 - b. Gradient Vector $\nabla f = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j} + \frac{\partial f}{\partial z}\mathbf{k} = \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right\rangle$
 - c. Maximum and Minimum Rate of Change
 - i. Direction of Extreme change and value

- 7. Maximum and Minimum Values
 - a. Determining Critical Points $\nabla f = 0$
 - b. Second Derivative Test $D(a,b) = \left[f_{xx} f_{xx} f_{xy}^2 \right]_{(a,b)}$
 - c. Absolute Maxima and Minima Extreme Value Theorem
- 8. Lagrange Multipliers
 - a. Find Extrema of Functions with One Constraint $\nabla f = \lambda \nabla g$