MAT 261 Exam V	Name
a. Let $\mathbf{F}(x, y, z) = (x^2 + y)\mathbf{i} + (y^2 + z)\mathbf{j} + (z^2 + x)\mathbf{k}$. Compute i. $\mathbf{\tilde{N}} \times \mathbf{F}$.	 Instructions: a. Do all of your work in this booklet. Do not tear off any sheets. b. Show all of your steps in the problems for full credit. c. Be clear and neat in your work. Any illegible work, or scribbling in the margins, will not be graded. d. Place a box around your answers. e. Place your name on all of the pages. f. If you need more space, you may use the back of a page and write On back of page # in the problem space.
11. N F .	DO AS MANY PROBLEMS AS YOU CAN!
	Page Pts
	1 (35 pts)
	2 (35 pts)
	3 (30 pts) Total (100 pts)
b. State the	d. Let $\nabla^2 f = 0$ in a region $D \subset R^2$. Prove using Green's
i. Fundamental Theorem of Calculus.	Theorem that $\int_{\partial D} \frac{\partial j}{\partial y} dx - \frac{\partial j}{\partial x} dy = 0.$
ii. Fundamental Theorem for line integrals.	
c. Find the area of the triangle with vertices at $(1.0.0)$	
(0,2,0),(0,0,3) using integration. [Sketch the triangle.]	e. Let <i>D</i> be the region between $y = x^2$ and $x = y^2$ for $0 \le x \le 1$. Compute $\int x^2 y dy + xy^2 dx$ for C the
	boundary of the region followed counterclockwise

MAT 261 Exam V Name _ Let $\mathbf{F}(x, y) = \langle e^x \cos 3y, -3e^x \sin 3y \rangle$. a. Consider the surface: b. Find a function f(x, y) such that $\mathbf{\tilde{N}} f = \mathbf{F}$ for all (x, y). $\mathbf{r}(u, v) = \langle v \cos u, v \sin u, 2v \rangle, 0 \le v \le 2, 0 \le u \le 2\pi.$ i. Describe and/or draw the surface. c. Evaluate $\int \mathbf{F} \cdot d\mathbf{s}$ for the path $\mathbf{c}(t) = (\cos t, \sin t)$, ii. Find a normal to the surface at (u, v) = (0, 1). $0 \le t \le 2\pi$. iii. What is the equation of the tangent plane at this d. Compute $\mathbf{\tilde{N}} \times \mathbf{F}$. point? iv. What is the area of this surface?

MAT 261 Exam V	Name
a. Sketch the vector field $\mathbf{F} = \frac{x\mathbf{i} + y\mathbf{j}}{\sqrt{x^2 + y^2}}$	d. Use Gauss' Theorem to prove that $\iint_{S} (f\nabla g - g\nabla f) \cdot \mathbf{n} d\mathbf{S} = \iiint_{E} (f\nabla^{2}g - g\nabla^{2}f) dV$
b. Compute $\int_C y ds$ for <i>C</i> the upper half of the circle $x^2 + y^2 = 9$.	e. Use Stoke's Theorem to evaluate: $\int_C y dx + (2x - z) dy + (z - x) dz, \text{ where } C \text{ is the intersection of } x^2 + y^2 + z^2 = 4 \text{ and } y = 1.$
c. Is $\int_C (2y^2 - 12x^2y^3) dx + (4xy - 9x^4y^2) dy$ path independent? Why?	f. Prove $\nabla \times (\nabla f) = 0$.