MAT 261 Exam IV	Name
1. Compute $\iint_{R} y \sin(\pi x) dx dy \text{ for } R = [0, 1] \times [1, 2].$	Instructions: a Do all of your work in this booklet. Do not tear off any sheets
	 b. Show all of your steps in the problems for full credit. c. Be clear and neat in your work. Any illegible work, or scribbling in the margins, will not be graded. d. Place a box around your answers. e. Place your name on all of the pages. f. If you need more space, you may use the back of a page and write On back of page # in the problem space.
	Page Pts
	1 (25 pts)
2. Sketch the region of integration, interchange the $\frac{4}{2}$	2 (25 pts)
order, and evaluate: $\int_{0}^{\infty} \int_{-\infty}^{\infty} x^2 y dy dx.$	Total (50 pts)
$0 \sqrt{x}$	4 Find the image of the unit square under the
	transformation $T(u, v) = (u - 2v, u + v)$.
3. Evaluate $\int_{0}^{2} \int_{0}^{\sqrt{4-y^{2}}} x dx dy$ using polar coordinates.	What is the Jacobian of this transformation?
	5. Find the surface area of the part of the plane 2x + 5y + z = 10 that lies inside the cylinder $x^2 + y^2 = 9$.

MAT 261 Exam IV	Name
MAT 261 Exam IV 6. A region of space lies between two surfaces, which are given by $z = 8 - x^2 - y^2$ and $z = x^2 + y^2$. a) Sketch the region and find the equation for the curve at the intersection.	Name 7. Evaluate $\iint_{D} \frac{2y}{x^2+1} dA$ for the region given by $D = \{(x, y) 0 \le x \le 1, 0 \le y \le \sqrt{x} \}.$
b) Express the volume of the region as a triple integral in Cartesian coordinates. Do not perform the integration!	8. A hollow wooden bowl of uniform density <i>D</i> has the shape of a hemisphere of outer radius 10" and an inner radius of 9". The center of mass is located at $(0, 0, \overline{z})$. Set up the integral expression for the mass and \overline{z} .
c) Express the volume of the region as a triple integral in cylindrical coordinates and carry out the integration.	BONUS: Compute \overline{z} .