MAT 261 Exam II		Name
Problem	Score	2. (16 pts) Consider the curve with the position as a
1 (12 pts)		function of time given by $\mathbf{r}(t) = -3\sin 2t - 1.3\cos 2t > 1$
2 (16 pts)		a. Find the velocity. $(1) = (3 \sin 2i, -1, 3 \cos 2i)$
3 (10 pts)		
4 (12 pts)		
Total (50 pts)		b. Find the acceleration.
1. (12 pts) Let $x(t) = 3\sin(\pi t^2)$, $y = 3\cos(\pi t^2)$.		N
a. Write the Cartesian equation for this curve.		c. Find the speed.
b. Determine the slope of this curve at $t = \frac{1}{2}$.		d. Find the tangent to the curve, $\mathbf{T}(t)$, at $t = \pi$.
		e. Find the normal to the curve, $N(t)$, at $t = \pi$.
c. What is the length of the curve for $0 \le t \le 1$?		? f. Find the binormal vector, $\mathbf{B}(t)$, at $t = \pi$.
d. Determine the equation of the tangent line to the curve at the point where $t = \frac{1}{2}$.		g. Determine the curvature at $t = \pi$.
		h. Find the arclength function.
		Bonus What is the centripetal acceleration, a_N , in Problem 2 at $t = \pi$?

MAT 261 Exam II	Name
3. (10 pts) Motion Problems a. A particle starts at the origin with initial velocity $\mathbf{v}(0) = 2\mathbf{k}$. If it's acceleration is $\mathbf{a} = <1, t, 0 >$, then what is the particle's position at $t = 1.0$?	4. (12 pts) Hodge Podge a. Let $\mathbf{L} = \mathbf{r} \times \mathbf{v}$, where \mathbf{r} is the position and \mathbf{v} the velocity. Compute and simplify: $\frac{d\mathbf{L}}{dt} =$
b. A soccer ball is kicked with initial speed 25.0 m/s at	b. Prove $\frac{d}{dt}(\mathbf{u}(t) \cdot \mathbf{v}(t)) = \frac{d\mathbf{u}(t)}{dt} \cdot \mathbf{v}(t) + \mathbf{u}(t) \cdot \frac{d\mathbf{v}(t)}{dt}$
an angle of 20.0°. [Answer to three decimal places.]	
	c. Find the equation of the osculating plane at (0,2,1) for the curve $x = \ln t$, $y = 2t$, $z = t^2$.
ii. What is the range?	
	d. Kepler's Third Law is given by $T = \frac{2\pi}{\sqrt{GM}} a^{3/2}$. What are <i>T</i> and <i>a</i> ?
iii. What is the maximum height?	
	Bonus If $\sqrt{GM} = 2.0 \times 10^7 \mathrm{m}^{2/3} \mathrm{s}^{-1}$ for the moon circling the Earth, then how far on average is the moon from the Earth assuming one month is 28 days?