MAT 261 Final Exam - Spring 2008 Name _____

WIAT 201 Final Exam - Spring 2000	
a. Let $\mathbf{v} = \mathbf{i} + 4\mathbf{j} + 2\mathbf{k}$, $\mathbf{u} = \mathbf{i} - 2\mathbf{j} - \mathbf{k}$, and $\mathbf{w} = \mathbf{i} - \mathbf{k}$.	Page Points Score
i. Find the area of the parallelogram formed by the vectors v and w .	1 29
vectors v and w.	2 24
	3 23
	4 24
	Total 100
	c. State the Fundamental Theorem of Line Integrals.
ii. Compute $\mathbf{w} \cdot (\mathbf{u} \times \mathbf{v})$	
	d. Suppose $f(x, y) = x^2y + \ln y$ and $x = s^2 + t^2$, $y = st$.
	Find $\frac{\partial f}{\partial s}$ at $(s, t) = (1, 2)$.
iii. Find the angle between \mathbf{u} and \mathbf{w} .	
	e. Let $f(x, y) = y^2 \sin(2x)$. Compute <i>df</i> in terms of <i>dx</i> and <i>dy</i>
iv. Determine the parametric equations for the line	and dy .
through $(1,2,3)$ in the direction of v .	
	f. Define $\mathbf{F}(x, y, z) = (x^2 + y)\mathbf{i} + (y^2 + z)\mathbf{j} + (z^2 + x)\mathbf{k}$.
	i. Compute $\nabla \cdot \mathbf{F}$
b. Let a particle have an acceleration of $\mathbf{a} = t\mathbf{i} - 5\mathbf{j}$ and	
at the origin have an initial velocity of $\mathbf{v}_0 = \mathbf{i} + \mathbf{j}$.	ii. Compute $\nabla \times \mathbf{F}$.
Determine the particle's position and velocity at time	
t=2?	

MAT 261 Final Exam - Spring 2008

Name

MA I 261 Final Exam - Spring 2008	Name
a. Consider a lamina oriented in the <i>xy</i> -plane occupying the region that lies between two quarter circles with radii one and two in the first quadrant. If the lamina density is $\rho = x^2 + y^2$, what is its mass?	e. Fido is on a mountain which has a shape described by $z = 100 - 25x^2 - 4y^2$. If Fido is at the point (1, 2, 59) on the mountain, in what the direction must Fido go to get down the mountain as fast as possible?
b. Evaluate $\iint_D 3xe^{x-3y} dxdy$ over the region bounded by the lines $2x + 3y = 1$, $2x + 3y = 0$, x - 3y = 1, $x - 3y = 0$ using the transformation u = 2x + 3y, $v = x - 3y$.	f. Evaluate $\int_{0}^{1} \int_{y}^{1} \sin x^2 dx dy$ by changing the order of integration.
c. Sketch and label several level curves for $f(x, y) = 6xy$.	g. Let $f(x, y) = x^2 + 2xy^2$. What is the rate of change of $f(x, y)$ in the direction $\mathbf{v} = 2\mathbf{i} - \mathbf{j}$ at $(x, y) = (-1, 1)$?.
d. Consider the cone $\mathbf{r}(u, v) = \langle u \cos v, u \sin v, u \rangle$ for $0 \le u \le 1, 0 \le v \le 2\pi$. Find its surface area.	h. Find the length of the curve $\mathbf{r}(t) = \langle t^2, 2t, \ln t \rangle$ for $1 \le t \le e$.

Name

a. Let <i>D</i> be the region between $y = x^2$ and $x = y^2$ for $0 \le x \le 1$ and <i>C</i> the curve enclosing <i>D</i> . Compute $\int_C x^2 y dy + xy^2 dx$.	e. Let $\mathbf{F}(x, y) = (e^x \cos 3y)\mathbf{i} - (2y + 3e^x \sin 3y)\mathbf{j}$. i. Find a function $f(x, y)$ such that $\nabla f = \mathbf{F}$.
b. Find $\frac{\partial z}{\partial x}$ when $xz = \ln(yz)$.	ii. What is ∇ × F ?
c. Find and classify the relative extremum for $f(x, y) = 2x - x^2 + y^2 - 1.$	f. Find the work done, $W = \int_{C} \mathbf{F} \cdot d\mathbf{r}$, by the force field $\mathbf{F}(x, y) = x^2 \mathbf{i} - xy \mathbf{j}$ in moving a particle along the quarter circle $\mathbf{r}(t) = \cos t \mathbf{i} + \sin t \mathbf{j}$, $-\frac{\pi}{2} \le t \le 0$.
d. Find the extreme values of $f(x, y) = x + y$ on the curve $2x^2 + y^2 = 1$.	 g. For a general parametrized curve r(t), define the following using r and its derivatives: i. Tangent vector. ii. Normal vector.
	iii. Curvature.

MAT 261 Final Exam - Spring 2008

Name

MAT 261 Final Exam - Spring 2008	Name
a. A hole of radius 1/2 is drilled vertically through the center of the hemisphere $x^2 + y^2 + z^2 = 1$, $z \ge 0$. Determine the volume integral of the remaining piece using cylindrical coordinates.	d. Use Stoke's Theorem to evaluate: $\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} y dx + (2x - z) dy + (z - x) dz, \text{for } C \text{ the}$ intersection of $y = \sqrt{x^2 + z^2}$ and $y = 1$.
b. Consider the surface $z = 2x^2 - 3y^2$. i. Find a normal vector at the point (-2,1).	e. The volume of a right circular cone of height <i>H</i> and radius <i>R</i> is $V = \frac{1}{3}\pi R^2 H$. If the radius and height are measured as $R = 3.2 \pm 0.2$ in and $H = 5.6 \pm 0.1$ in, what is the error is made in computing the volume?
ii. What is the equation of the tangent plane (-2,1)?	
c. Use Gauss' Divergence Theorem to evaluate $\iint_{S} \mathbf{F} \cdot d\mathbf{S}$, where <i>S</i> is the positively oriented surface of the unit sphere with its center at the origin and $\mathbf{F}(x, y, z) = (z - y)\mathbf{i} + (y^2 + z^2)\mathbf{j} + (y - x^2)\mathbf{k}.$	f. Find the equation of the plane containing the points (1,1,0), (2,0,-1) and (0, 3, 0).
	g. Name the surface:
	i. $3x^2 + y = 5$. ii. $z = 3x^2 - y^2$.
	$iii.x^2 + y^2 - z^2 = -5.$