
Lab 4

Direction Fields and Euler’s
Method

Purpose

To investigate direction fields and to learn a simple numerical technique to solve first order differential
equations.

Files

Euler.mws, DirectionFields.doc

4.1 Theory

Many physical phenomena are modelled using differential equations. A differential equation is an
equation for an unknown function, y(x), which involves the unknown function and its derivatives.
The simplest type of differential equation involves only the first derivative. Formally, we have

F (
dy

dx
, y, x) = 0.

Such an equation is called a first order differential equation. Solving for the derivative, this can be
written as

dy

dx
= f(x, y). (4.1)

A simple example is
dy

dx
= 2x. (4.2)

By a simple integration, we know that there are many possible solutions to Equation (4.2),

y(x) = x2 + C.

This is called the general solution. It can be verified that this is a solution by inserting y(x) into
the Equation (4.2) and seeing that the solution makes the differential equation true.
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If we want one member of this family of solutions, then we have to specify a condition on y(x).
For example, we could seek a solution satisfying Equation (4.2) and the condition y(0) = 1. Inserting
x = 0 into the solution, we have 1 = C. So, the resulting solution is

y(x) = x2 + 1.

Conditions y(x0) = y0 are called initial conditions. Problems in which a differential equation and
an initial condition are given are called initial value problems.

More general first order differential equations are not as easy to solve in terms of simple functions.
We will learn how to solve several classes of first order differential equations in the class lectures. In
the absence of these analytical methods, we can still obtain information about the solutions through
the use of direction fields or numerical methods. We will explore these methods for the first order
differential equation

dy

dx
= x + y, y(0) = 1

.

4.1.1 Direction Fields

We will investigate initial value problems of the form

y′ =
dy

dx
= f(x, y), y(x0) = y0. (4.3)

We first look at what are called direction fields. These give us sort of a snapshot of all of the solutions
in a region of the xy-plane.

We sketch the graph of a typical solution. It is a curve that passes through the point (x0, y0).
We would like to determine the shape of the solution curve.
The differential equation actually provides us with the slope
of the tangent to the solution curve at each point. In the
figure we see an example of a solution curve with the tangents
superimposed. Since we have the initial condition, we can see
that the slope at that point is given by f(x0, y0). However,
we do not know any other points. In the next section we will
see how we can get approximate values for the solution of the
initial value problem. However, we do not have these values at
this time.
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Figure 4.1: Plotting pieces of tangent
lines to a solution curve.

For now, there is a way around our problem. We could just plot pieces of tangent lines at all
points in the plane. This will give us what are called direction
fields. An example of a direction field is given in the next
figure. Here you can see a pattern developing. You can almost
envision the above solution superimposed on the plot. In fact,
given other initial conditions, you could sketch the solution
passing through the curve. For example, given y(1) = 1, what
do you think the solution curve would look like? How about the
initial condition y(−1) = −1? You will be given a few examples
of direction fields and will be asked to sketch in families of
solutions.
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Figure 4.2: A direction field plot.
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. Exercise 4.1
You are given six direction fields corresponding to six different first order differential equations.

Discuss these plots with your lab partner. Note any patterns you see. What types of curves do you
think the solutions take on? For each direction field, sketch three solution curves in different parts
of the plot. Indicate for each a point on the graph, (x0, y0) , that would be an initial condition that
would give that solution.

4.1.2 Euler’s Method

Euler’s method is a technique to numerically solve first order differential equations of the form in
Equation (4.3).

The method is not very efficient, but it is simple and easy to implement on a computer. We may
think of Euler’s method as the quantitative version of the
method of finding solution curves by direction fields. Ba-
sically, the method consists in flowing on straight lines by
small increments along the direction field to approximate
the solution. The solution of the differential equation, with
the given initial condition, is a curve which passes through
the point (x0, y0). Since y′ represents the slope of the tan-
gent to the curve, we see from (4.5) that the value f(x0, y0)
is precisely the slope of this tangent. Using the point-slope
formula, we find the equation of this tangent line, and use
it to approximate the solution curve near (x0, y0). We then
increment the x-coordinate by a small amount and calcu-
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Figure 4.3: Euler’s Method

late the y-coordinate coordinate of this new point on the tangent line. At the new point, (x1, y1) we
repeat the entire process, iterating n times, to get a sequence of successive approximations yn to the
solution. If more accuracy is desired, one can decrease the increment size and increase the number
of iterations

Suppose that we are interested in the value of the solution to (4.5) at x = b. Let

{x0, x1, . . . xn = b, }

with x0 < x1 . . . < xn = b, be a partition of the interval (x0, b), into n pieces of size h. Thus,
x1 = x + h be a point nearby. The approximation y1 to the solution at x1 is given by

y1 = y0 + hf(x0, y0). (4.4)

We now consider (x1, y1) as a new starting point and repeat the process. In general, the solution
is obtained by iterating the formula

yn+1 = yn + hf(xn, yn). (4.5)

Clearly, the smaller we choose the value of h, the better the approximation. The trade off is that
the smaller the value of h we pick, the larger the number of iterations needed. The approximation
to the solution curve consists of a polygonal line joining the points (xn, yn). With the help of Maple
it is possible to pick fairly small values of h without a noticeable waiting time. The polygonal
approximation can then be made to look rather smooth. We suggest below some exercises to try in
Maple, but it would be very worthwhile and instructive to try the first iterations by hand, with the
help of a pocket calculator.
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Exercises

Consider the differential equation
dy

dx
= x + y, y(0) = 1

.

. Exercise 4.2 The Maple worksheet implements Euler’s method to compute the solution for
0 ≤ x ≤ 1. The worksheet generates the sequence of points (xn, yn) for n = 1, 2, . . . , N which ap-
proximates the solution of the differential equation. Open the worksheet and change the increments,
h. Make observations as to how well the sequence of points (xn, yn) approximates the exact solution
for the following:

1. h = 1/2, 2 iterations.

2. h = 1/4, 4 iterations.

3. h = 1/10, 10 iterations.

4. h = 1/100, 100 iterations.

. Exercise 4.3 Show that y = 2ex − x− 1 is the exact solution. Namely, insert this function (by
hand) into the differential equation and show that the left side of the equation is the same as the
right side.




