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Poisson Integral Formula
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u(a, θ) = f (θ)

Figure 1: The disk of radius a with
boundary condition along the edge at
r = a.

The solution of Laplace’s equation, ∇2u = 0, in polar co-
ordinates on the disk of radius a shown in Figure 1 with a fixed
boundary condition, u(a, θ) = f (θ), is given by

u(r, θ) =
a0

2
+

∞

∑
n=1

(an cos nθ + bn sin nθ) rn, (1)

where the Fourier coefficients are given by

an =
1

πan

∫ π

−π
f (θ) cos nθ dθ, n = 0, 1, . . . , (2)

bn =
1

πan

∫ π

−π
f (θ) sin nθ dθ n = 1, 2 . . . . (3)

We can put the solution in a more compact form by inserting the
Fourier coefficients into the general solution. Doing this, we have

u(r, θ) =
a0

2
+

∞

∑
n=1

(an cos nθ + bn sin nθ) rn

=
1

2π

∫ π

−π
f (φ) dφ

+
1
π

∫ π

−π

∞

∑
n=1

[cos nφ cos nθ + sin nφ sin nθ]
( r

a

)n
f (φ) dφ

=
1
π

∫ π

−π

[
1
2
+

∞

∑
n=1

cos n(θ − φ)
( r

a

)n
]

f (φ) dφ. (4)

The term in the brackets can be summed. We note that

cos n(θ − φ)
( r

a

)n
= Re

(
ein(θ−φ)

( r
a

)n)
= Re

( r
a

ei(θ−φ)
)n

. (5)

Therefore,
∞

∑
n=1

cos n(θ − φ)
( r

a

)n
= Re

(
∞

∑
n=1

( r
a

ei(θ−φ)
)n
)

.

The right hand side of this equation is a geometric series with com-
mon ratio of r

a ei(θ−φ), which is also the first term of the series. Since∣∣∣ r
a ei(θ−φ)

∣∣∣ = r
a < 1, the series converges. Summing the series, we

obtain
∞

∑
n=1

( r
a

ei(θ−φ)
)n

=
r
a ei(θ−φ)

1− r
a ei(θ−φ)

=
rei(θ−φ)

a− rei(θ−φ)
(6)
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We need to rewrite this result so that we can easily take the real
part. Thus, we multiply and divide by the complex conjugate of the
denominator to obtain

∞

∑
n=1

( r
a

ei(θ−φ)
)n

=
rei(θ−φ)

a− rei(θ−φ)

a− re−i(θ−φ)

a− re−i(θ−φ)

=
are−i(θ−φ) − r2

a2 + r2 − 2ar cos(θ − φ)
. (7)

The real part of the sum is given as

Re

(
∞

∑
n=1

( r
a

ei(θ−φ)
)n
)

=
ar cos(θ − φ)− r2

a2 + r2 − 2ar cos(θ − φ)
.

Therefore, the factor in the brackets under the integral in Equation (4)
is

1
2
+

∞

∑
n=1

cos n(θ − φ)
( r

a

)n
=

1
2
+

ar cos(θ − φ)− r2

a2 + r2 − 2ar cos(θ − φ)

=
a2 − r2

2(a2 + r2 − 2ar cos(θ − φ))
.

(8)

Thus, we have shown that the solution of Laplace’s equation on
a disk of radius a with boundary condition u(a, θ) = f (θ) can be
written in the closed form Poisson Integral Formula

u(r, θ) =
1

2π

∫ π

−π

a2 − r2

a2 + r2 − 2ar cos(θ − φ)
f (φ) dφ. (9)

This result is called the Poisson Integral Formula and

K(θ, φ) =
a2 − r2

a2 + r2 − 2ar cos(θ − φ)

is called the Poisson kernel.

Example 1. Evaluate the solution (9) at the center of the disk.
We insert r = 0 into the solution (9) to obtain

u(0, θ) =
1

2π

∫ π

−π
f (φ) dφ.

Recalling that the average of a function g(x) on [a, b] is given by

gave =
1

b− a

∫ b

a
g(x) dx,

we see that the value of the solution u at the center of the disk
is the average of the boundary values. This is sometimes re-
ferred to as the mean value theorem.
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Laplace’s Equation in 2D - Complex Methods

Harmonic functions are solutions of Laplace’s equation.
We have seen that the real and imaginary parts of a holomorphic
function are harmonic. So, there must be a connection between com-
plex functions and solutions of the two-dimensional Laplace equa-
tion. In this section we will describe how conformal mapping can
be used to find solutions of Laplace’s equation in two dimensional
regions.

We can derive Laplace’s equation for an incompressible, ∇ · v = 0,
irrotational, , ∇× v = 0, fluid flow. From well-known vector iden-
tities, we know that ∇ × ∇φ = 0 for a scalar function, φ. There-
fore, we can introduce a velocity potential, φ, such that v = ∇φ.
Thus, ∇ · v = 0 implies ∇2φ = 0. So, the velocity potential satisfies
Laplace’s equation.

Fluid flow is probably the simplest and most interesting applica-
tion of complex variable techniques for solving Laplace’s equation.
The study of fluid flow and conformal mappings dates back to Euler,
Riemann, and others.1 The method was further elaborated upon by 1 “On the Use of Conformal Mapping in

Shaping Wing Profiles,” MAA lecture
by R. S. Burington, 1939, published
(1940) in ... 362-373

physicists like Lord Rayleigh (1877) and applications to airfoil theory
we presented in papers by Kutta (1902) and Joukowski (1906) on later
to be improved upon by others. Conformal mappings have been used
to study two-dimensional ideal fluid flow, leading to the study of
airfoil design.

We begin by considering the fluid flow across a curve, C as shown
in Figure 2. We assume that it is an ideal fluid with zero viscosity
(i.e., does not flow like molasses) and is incompressible. It is a contin-
uous, homogeneous flow with a constant thickness and represented
by a velocity U = (u(x, y), v(x, y)), where u and v are the horizontal
components of the flow as shown in Figure 2.

x

y

A

B

C

u

v
Vs

U

Figure 2: Fluid flow U across curve C
between the points A and B.

We are interested in the flow of fluid across a given curve which
crosses several streamlines. Therefore, for a unit thickness the mass
flow rate is given by

dm
dt

= ρ(u dy− v dx).

Since the total mass flowing across ds in time dt is given by dm =

ρdV, for constant density, this also gives the volume flow rate,

dV
dt

= u dy− v dx,

over a section of the curve. The total volume flow over C is therefore

dV
dt
∣∣
total =

∫
C

u dy− v dx.
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If this flow is independent of the curve, i.e., the path, then we have

∂u
∂x

= −∂v
∂y

.

[This is just a consequence of Green’s Theorem in the Plane.] Another
way to say this is that there exists a function, ψ(x, t), such that dψ =

u dy− v dx. Then,∫
C

u dy− v dx =
∫ B

A
dψ = ψB − ψA.

However, from the calculus of several variables, we know that

dψ =
∂ψ

∂x
dx +

∂ψ

∂y
dy = u dy− v dx.

Therefore,
x

y

A

B

C

dt

U
n̂

Figure 3: An amount of fluid crossing
curve c in unit time.

u =
∂ψ

∂y
, v = −∂ψ

∂x
.

It follows that if ψ(x, y) has continuous second derivatives, then
ux = −vy. This function is called the streamline function. Streamline functions.

Furthermore, for constant density, we have

∇ · (ρU) = ρ

(
∂u
∂x

+
∂v
∂y

)
= ρ

(
∂2ψ

∂y∂x
− ∂2ψ

∂x∂y

)
= 0. (10)

This is the conservation of mass formula for constant density fluid
flow. Velocity potential curves.

We can also assume that the flow is irrotational. This means that
the vorticity of the flow vanishes; i.e., ∇× U = 0. Since the curl of
the velocity field is zero, we can assume that the velocity is the gra-
dient of a scalar function, U = ∇φ. Then, a standard vector identity
automatically gives

∇×U = ∇×∇φ = 0.

For the two-dimensional flow with U = (u, v), we have

u =
∂φ

∂x
, v =

∂φ

∂y
.

This is the velocity potential function for the flow.
Let’s place the two-dimensional flow in the complex plane. Let an

arbitrary point be z = (x, y). Then, we have found two real-valued
functions, ψ(x, y) and ψ(x, y), satisfying the relations

u =
∂φ

∂x
=

∂ψ

∂y

v =
∂φ

∂y
= −∂ψ

∂x
(11)
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These are the Cauchy-Riemann relations for the real and imaginary
parts of a complex differentiable function,

F(z(x, y) = φ(x, y) + iψ(x, y).
From its form, dF

dz is called the complex

velocity and
√∣∣∣ dF

dz

∣∣∣ = √u2 + v2 is the

flow speed.

Furthermore, we have

dF
dz

=
∂φ

∂x
+ i

∂ψ

∂x
= u− iv.

Integrating, we have

F =
∫

C
(u− iv) dz

φ(x, y) + iψ(x, y) =
∫ (x,y)

(x0,y0)
[u(x, y) dx + v(x, y) dy]

+i
∫ (x,y)

(x0,y0)
[−v(x, y) dx + u(x, y) dy]. (12)

Therefore, the streamline and potential functions are given by the
integral forms

φ(x, y) =
∫ (x,y)

(x0,y0)
[u(x, y) dx + v(x, y) dy],

ψ(x, y) =
∫ (x,y)

(x0,y0)
[−v(x, y) dx + u(x, y) dy]. (13)

These integrals give the circulation
∫

C Vs ds =
∫

C u dx + v dy and the
fluid flow per time,

∫
C −v dx + u dy.

The streamlines are given by the level curves ψ(x, y) = c1 and
the potential lines are given by the level curves φ(x, y) = c2. These
are two orthogonal families of curves; i.e., these families of curves
intersect each other orthogonally at each point as we will see in the
examples. Note that these families of curves also provide the field
lines and equipotential curves for electrostatic problems. Streamliners and potential curves are

orthogonal families of curves.
Example 2. Show that φ(x, y) = c1 and ψ(x, y) = c2 are an
orthogonal family of curves when F(z) = φ(x, y) + iψ(x, y) is
holomorphic.

In order to show that these curves are orthogonal, we need
to find the slopes of the curves at an arbitrary point, (x, y). For
φ(x, y) = c1, we recall from multivaribale calculus that

dφ =
∂φ

∂x
dx +

∂φ

∂y
dy = 0.

So, the slope is found as

dy
dx

= −
∂φ
∂x
∂φ
∂y

.



complex analysis notes 6

Similarly, we have

dy
dx

= −
∂ψ
∂x
∂ψ
∂y

.

Since F(z) is differentiable, we can use the Cauchy-Riemann
equations to find the product of the slopes satisfy

∂φ
∂x
∂φ
∂y

∂ψ
∂x
∂ψ
∂y

= −
∂ψ
∂y
∂ψ
∂x

∂ψ
∂x
∂ψ
∂y

= −1.

Therefore, φ(x, y) = c1 and ψ(x, y) = c2 form an orthogonal
family of curves.

x

y Figure 4: Plot of the orthogonal families
φ = x2 − y2 = c1 (dashed) and
φ(x, y) = 2xy = c2.

Example 3. For F(z) = z2 = x2 − y2 + 2ixy, show that the level
curves for Re(F) and Im(F) are orthogonal.

For this problem, φ(x, y) = x2 − y2 and ψ(x, y) = 2xy. The
slopes of the families of curves are given by

dy
dx

= −
∂φ
∂x
∂φ
∂y

= − 2x
−2y

=
x
y

.

dy
dx

= −
∂ψ
∂x
∂ψ
∂y

= −2y
2x

= − y
x

. (14)
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The products of these slopes is −1, proving that the level curves
for Re(F) and Im(F) are orthogonal. These orthogonal families
are depicted in Figure 4.

We will now turn to some typical examples by writing down some
differentiable functions, F(z), and determining the types of flows
that result from these examples. We will then turn in the next section
to using these basic forms to solve problems in slightly different
domains through the use of conformal mappings.

Example 4. Describe the fluid flow associated with F(z) =

U0e−iαz, where U0 and α are real.
For this example, we have

dF
dz

= U0e−iα = u− iv.

Thus, the velocity is constant,

U = (U0 cos α, U0 sin α).

Thus, the velocity is a uniform flow at an angle of α.

x

y

α

Figure 5: Stream lines (solid) and
potential lines (dashed) for uniform
flow at an angle of α, given by F(z) =
U0e−iαz.

Since

F(z) = U0e−iαz = U0(x cos α + y sin α) + iU0(y cos α− x sin α).

Thus, we have

φ(x, y) = U0(x cos α + y sin α),

ψ(x, y) = U0(y cos α− x sin α). (15)

An example of this family of curves is shown in Figure ??.

Example 5. Describe the flow given by the function F(z) =
U0e−iα

z−z0
.

We write

F(z) =
U0e−iα

z− z0

=
U0(cos α + i sin α)

(x− x0)2 + (y− y0)2 [(x− x0)− i(y− y0)]

=
U0

(x− x0)2 + (y− y0)2 [(x− x0) cos α + (y− y0) sin α]

+i
U0

(x− x0)2 + (y− y0)2 [−(y− y0) cos α + (x− x0) sin α].

(16)

The level curves become

φ(x, y) =
U0

(x− x0)2 + (y− y0)2 [(x− x0) cos α + (y− y0) sin α] = c1,

ψ(x, y) =
U0

(x− x0)2 + (y− y0)2 [−(y− y0) cos α + (x− x0) sin α] = c2.

(17)
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x

y Figure 6: Stream lines (solid) and
potential lines (dashed) for the flow

given by F(z) = U0e−iα

z for α = 0.

The level curves for the stream and potential functions sat-
isfy equations of the form

βi(∆x2 + ∆y2)− cos(α + δi)∆x− sin(α + δi)∆y = 0,

where ∆x = x− x0, ∆y = y− y0, βi =
ci

U0
, δ1 = 0, and δ2 = π/2.,

These can be written in the more suggestive form

(∆x− γi cos(α− δi))
2 + (∆y− γi sin(α− δi))

2 = γ2
i

for γi = ci
2U0

, i = 1, 2. Thus, the stream and potential curves
are circles with varying radii (γi) and centers ((x0 + γi cos(α−
δi), y0 + γi sin(α − δi))). Examples of this family of curves is
shown for α = 0 in in Figure 6 and for α = π/6 in in Figure 7.

The components of the velocity field for α = 0 are found
from

dF
dz

=
d
dz

(
U0

z− z0

)
= − U0

(z− z0)2

= −U0[(x− x0)− i(y− y0)]
2

[(x− x0)2 + (y− y0)2]2

= −U0[(x− x0)
2 + (y− y0)

2 − 2i(x− x0)(y− y0)]

[(x− x0)2 + (y− y0)2]2

= −U0[(x− x0)
2 + (y− y0)

2]

[(x− x0)2 + (y− y0)2]2
+ i

U0[2(x− x0)(y− y0)]

[(x− x0)2 + (y− y0)2]2

= − U0

[(x− x0)2 + (y− y0)2]
+ i

U0[2(x− x0)(y− y0)]

[(x− x0)2 + (y− y0)2]2
. (18)
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x

y Figure 7: Stream lines (solid) and
potential lines (dashed) for the flow

given by F(z) = U0e−iα

z for α = π/6.

Thus, we have

u = − U0

[(x− x0)2 + (y− y0)2]
,

v =
U0[2(x− x0)(y− y0)]

[(x− x0)2 + (y− y0)2]2
. (19)

Example 6. Describe the flow given by F(z) = m
2π ln(z− z0).

We write F(z) in terms of its real and imaginary parts:

F(z) =
m
2π

ln(z− z0)

=
m
2π

[
ln
√
(x− x0)2 + (y− y0)2 + i tan−1 y− y0

x− x0

]
. (20)

The level curves become

φ(x, y) =
m
2π

ln
√
(x− x0)2 + (y− y0)2 = c1,

ψ(x, y) =
m
2π

tan−1 y− y0

x− x0
= c2.

(21)

Rewriting these equations, we have

(x− x0)
2 + (y− y0)

2 = e4πc1/m,

y− y0 = (x− x0) tan
2πc2

m
.

(22)

In Figure 8 we see that the stream lines are those for a source or
sink depending if m > 0 or m < 0, respectively.
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x

y Figure 8: Stream lines (solid) and
potential lines (dashed) for the flow
given by F(z) = m

2π ln(z − z0) for
(x0, y0) = (2, 1).

Example 7. Describe the flow given by F(z) = − iΓ
2π ln z−z0

a .
We write F(z) in terms of its real and imaginary parts:

F(z) = − iΓ
2π

ln
z− z0

a

= −i
Γ

2π
ln

√(
x− x0

a

)2
+

(
y− y0

a

)2
+

Γ
2π

tan−1 y− y0

x− x0
.(23)

The level curves become

φ(x, y) =
Γ

2π
tan−1 y− y0

x− x0
= c1,

ψ(x, y) = − Γ
2π

ln

√(
x− x0

a

)2
+

(
y− y0

a

)2
= c2.

(24)

Rewriting these equations, we have

y− y0 = (x− x0) tan
2πc1

Γ
,(

x− x0

a

)2
+

(
y− y0

a

)2
= e−2πc2/Γ.

(25)

In Figure 9 we see that the stream lines circles, indicating rota-
tional motion. Therefore, we have a vortex of counterclockwise,
or clockwise flow, depending if Γ > 0 or Γ < 0, respectively.

Example 8. Flow around a cylinder, F(z) = U0

(
z + a2

z

)
,

a, U0 ∈ R.
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x

y Figure 9: Stream lines (solid) and
potential lines (dashed) for the flow
given by F(z) = − iΓ

2π ln(z − z0) for
(x0, y0) = (2, 1).

For this example, we have

F(z) = U0

(
z +

a2

z

)
= U0

(
x + iy +

a2

x + iy

)
= U0

(
x + iy +

a2

x2 + y2 (x− iy)
)

= U0x
(

1 +
a2

x2 + y2

)
+ iU0y

(
1− a2

x2 + y2

)
. (26)

Figure 10: Stream lines for the flow

given by F(z) = U0

(
z + a2

z

)
.

The level curves become

φ(x, y) = U0x
(

1 +
a2

x2 + y2

)
= c1,

ψ(x, y) = U0y
(

1− a2

x2 + y2

)
= c2.

(27)
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Note that for the streamlines when |z| is large, then ψ ∼ Vy, or
horizontal lines. For x2 + y2 = a2, we have ψ = 0. This behavior
is shown in Figure 10 where we have graphed the solution for
r ≥ a.

The level curves in Figure 10 can be obtained using the im-
plicitplot feature of Maple. An example is shown below:

restart: with(plots):

k0:=20:

for k from 0 to k0 do

P[k]:=implicitplot(sin(t)*(r-1/r)*1=(k0/2-k)/20, r=1..5,

t=0..2*Pi, coords=polar,view=[-2..2, -1..1], axes=none,

grid=[150,150],color=black):

od:

display({seq(P[k],k=1..k0)},scaling=constrained);

A slight modification of the last example is if a circulation term is
added:

F(z) = U0

(
z +

a2

z

)
− iΓ

2π
ln

r
a

.

The combination of the two terms gives the streamlines,

ψ(x, y) = U0y
(

1− a2

x2 + y2

)
− Γ

2π
ln

r
a

,

which are seen in Figure 11. We can see interesting features in this
flow including what is called a stagnation point. A stagnation point

is a point where the flow speed,
∣∣∣ dF

dz

∣∣∣ = 0. Stagnation points.

Figure 11: Stream lines for the flow

given by F(z) = U0

(
z + a2

z

)
− Γ

2π ln z
a .

Example 9. Find the stagnation point for the flow F(z) =(
z + 1

z

)
− i ln z.
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Since the flow speed vanishes at the stagnation points, we
consider

dF
dz

= 1− 1
z2 −

i
z
= 0.

This can be rewritten as

z2 − iz− 1 = 0.

The solutions are z = 1
2 (i ±

√
3). Thus, there are two stagna-

tion points on the cylinder about which the flow is circulating.
These are shown in Figure 12.

Figure 12: Stagnation points (red) on
the cylinder are shown for the flow

given by F(z) =
(

z + 1
z

)
− i ln z.
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