Name _____

- 1. Do the following:
 - a. Convert to polar form: 5-12i
 - b. Evaluate and plot the roots of $\sqrt[3]{i-1}$.

c. Find all values of z such that $e^z = -3$.

d. Find the real and imaginary parts of $\cos(z - \frac{\pi}{2})$ in the simplest form.

- 2. Sketch the set of points $z \in \mathbb{C}$ determined by the conditions: a. $z = 3 + i + 2e^{i\theta}, 0 \le \theta \le \pi$.
 - b. |z-1| = |z+i|

3. Describe in detail the image of the circle |z-i|=2 under the inversion $w=\frac{1}{z}$.

- 4. (6 pts) Consider the function $u(x, y) = x^2 x y^2$
 - a. Find the harmonic conjugate v(x, y)

- b. For these functions determine the analytic f(z) = u(x, y) + iv(x, y). (Your answer has to be written as a function of *z*.)
- 5. Let f(z) be analytic in the disk |z-1| < 1 and $f'(z) = \frac{1}{z}$. Show that $f(z) = \log z$ given that f(1) = 0. [Why isn't this obvious?]
- 6. Use the triangle inequality to prove that $|z_1 z_2| \ge |z_1| |z_2|$ for any two complex numbers.
- 7. Show that the function $f(z) = \overline{z}^2 + z$ is not analytic.

- 8. (10 pts) Define the following: a. Entire function
 - b. Harmonic function
 - c. Conformal map
 - d. Jordan curve theorem
 - e. Linear fractional transformation
- 9. Consider the collection of ordered pairs of real numbers (x, y) satisfying the addition and multiplication formulae for the complex number system. Prove the cancellation law for multiplication: If $z_1 z_2 = z_1 z_3$ and $z_1 \neq 0$, then $z_2 = z_3$.

10. Prove $|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|^2).$

- 11. Consider the usual stereographic projection. Locate the images of following on the sphere:
 - a. 3 + 4i.
 - b. |z| > 1.
 - c. Re z > 0.
 - d. Family of parallel lines.

Complex Variables Midterm Sample

12. Find all of the zeros and poles, including their order:

$$\frac{z^5 + 6iz^4 - 11z^3 - 2iz^2 - 2z^4 - 12iz^3 + 24z^2 + 16iz - 12z - 8i}{z^2(z-3)}$$

- 13. Find all complex solutions of sin(z) = 4.
- 14. Determine the convergence of

a.
$$\sum_{n=1}^{\infty} (-1)^n \frac{2^n}{n!}$$
.

b.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} (z-3)^n$$
.

15. Find the image of |z| = 2 under $f(z) = z + \frac{1}{z}$.

16. Find a linear fractional transformation that takes the points 0, 1, i into the points -2, 0, 2.

Complex Variables Midterm Sample

Name _____