MAT 475/564 Exam II Review

1. Fractals

- a. Cantor set, Koch Curve
- b. Sierpinski triangle
- c. Mandelbrot and Julia sets
- d. Iterated function systems
- e. Linear and affine transformations
- f. Fractal dimension
- g. Ternary, binary, and other representations

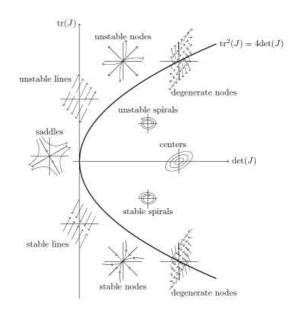
2. Discrete Systems in the Plane

- a. Fixed points, periodic points
- b. Stability
- c. Chaos
- d. Lyapunov exponents and numbers
- e. Standard map
- f. Continued fractions
- g. Rotation numbers, Fibonacci numbers, golden mean
- n. KAM curves, invariant tori, quasiperiodic orbits

3. Linear Systems of Differential Equations

- a. Equilibrium Solutions
- b. Eigenvalue Problems Solve for eigenvalues and eigenfunctions.
- c. Solution of systems Use eigenvalues and eigenfunctions to construct solutions to

systems.
$$\mathbf{v} = \begin{pmatrix} u \\ v \end{pmatrix} e^{\lambda t}$$
.


- i. Turn single ODEs into systems
- ii. Turn system into single ODE
- iii. Solve Second Order Linear Differential Equations of form ax'' + bx' + cx = 0
 - 1. Solve characteristic equation $a\lambda^2 + b\lambda + c = 0$.
 - 2. Three Cases:

a.
$$x(t) = k_1 e^{\lambda_1 t} + k_2 e^{\lambda_2 t}$$

b.
$$x(t) = e^{\lambda t} (k_1 + k_2 t)$$

c.
$$x(t) = e^{\alpha t} [c_1 \cos(\beta t) + c_2 \sin(\beta t)], \ \lambda = \alpha \pm i\beta.$$

- d. Understand classification of Equilibrium Points and Connection to Phase Portraits, Eigenvalues and Solution Behavior.
- e. Nullclines
- f. Types: Stable/Unstable, Nodes, Foci, Centers, Degenerate Nodes, and Saddles.
- g. Stability Diagram

MAT 475/564 Exam II Review

- 4. Nonlinear Systems of Differential Equations
 - a. Autonomous First Order Equations $\frac{dy}{dt} = f(y)$
 - i. Equilibrium solutions $f(y_0) = 0$.
 - ii. Classification (stable, unstable)
 - iii. Phase Lines, Bifurcation Diagrams
 - 1. Saddle-Node Bifurcation
 - 2. Transcritical Bifurcation
 - 3. Pitchfork Birfurcation
 - b. Nonlinear Systems
 - i. Linearization About Equilibrium (Fixed) Points
 - ii. Stability of Fixed Points
 - iii. Identifying Interesting Features of Nonlinear Systems
 - c. Special Systems
 - i. Mass-spring $m\ddot{x} + b\dot{x} + kx = 0$.
 - ii. Nonlinear Pendulum $m\ddot{x} + b\dot{x} + k \sin x = 0$.
 - iii. Logistic Model $\dot{x} = ax(1-x)$