This exam has 12 problems on 5 pages with two problems designated graduate students only. Do as many problems as you can. You can use the back of a page but note this in the problem space. There are no calculators, phones, or other electronic devices allowed during this exam. Be sure to show all your work.

Name:	45.1				
	KEY	×		Score:	

Problem 1. (12 pts) Let X and Y be sets and $A \subset X$. Define the following:

- (a) Topology on X. Collection of subsets of X satisfying Xopen, Dopen, arbitrary unions of open sets are open, and finite intersections of open sets are open.
- (b) Subspace topology on A. Subset of A is open if it is ARU for some open U in X.
- (c) Discrete topology on X. All subsets of X are open
- (d) X is connected. if there are no nonempty open sets of X such That They are disjoint [UNV=+] and cover X [UVV=T].
- (e) X is compact. if every open cover of X admits a finite refinement.
- (f) X is Hausdorff. if For anytwodistrict points x, y e X, I open U, V C X such that X e U, y e V, and UN V = \$.

Problem 2. (2 pts) State the Heine-Borel Theorem.

Subspace TCIR is compact iff Tis closed and bounded.

Problem 3. (4 pts) Let S and T be two topologies on a set X.

a. Is their union, $S \cup T$, a topology on X? Why?

No. If S=T, ZUES, U&T. Let VETOS, V# \$
Then VES, UNVES but if VET, V&TOS
Then UNV& SUT.

b. Is their intersection, $S \cap T$, a topology on X? Why? Yes. S,T hoth contain b, X, If UES, UET, U+b, X and VES, VET. Then, UNVES, T. => UNVES, T

Problem 4. (6 pts) Let $X = \{1, 2, 3, 4\}$ be equipped with the topology

$$T = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, \{3, 4\}, \{2, 3, 4\}, \{1, 3, 4\}, \{1, 2, 3, 4\}\}.$$

Let $Y = \{a, b, c\}$.

a. Let $f:X\to Y$ be the function sending $1\to a,\ 2\to a,\ 3\to b,\ \text{and}\ 4\to c.$ Find the quotient topology Q on Y defined by f.

b. Let $g: X \to Y$ be the function sending $1 \to a$, $2 \to b$, $3 \to b$, and $4 \to c$. Find the quotient topology P on Y defined by g.

c. Are the spaces (Y,Q) and (Y,P) homeomorphic? If yes, write down the homeomorphism. If not, explain why not.

Problem 5. (6 pts) Consider the real numbers \mathbb{R} with the standard topology and the closed interval $[-1,2] \subset \mathbb{R}$ with the subset topology. Consider the following subsets of [-1,2]. Which are open in \mathbb{R} ? Which are open in [-1,2]?

a.
$$A = (0,1),$$
 Both

b.
$$B = (1, 2],$$
 Not in R but $B = [-1, 2] \cap (1, 3)$

c.
$$C = \{-1\} \cup (1, 2]$$
?

Problem 6. (5 pts) Let X and Y be topological spaces and let $y_0 \in Y$ be a point.

a. Give a basis for the product topology on $X \times Y$.

Openseto are of the form UXV for UCX open VCY open

b. Prove that the function $f: X \to X \times Y$, defined by $f(x) = (x, y_0)$, is continuous when $X \times Y$ is given the product topology.

Need to show
$$\bar{f}'(U \times V)$$
 is open for basis element $U \times V$

$$\bar{f}'(U \times V) = \psi \quad \text{if } y_0 \notin V$$

$$\bar{f}'(U \times V) = U \quad \text{if } y_0 \in V$$
Both $\psi_0 \cup \omega_0 \in V$ are open in X , so f is continuous

Problem 7. (3 pts) Which of the following are connected? (0,1), $\mathbb{R} - \{0\}$, $\mathbb{R}^2 - \{0\}$.

Problem 8. (3 pts) Describe how one shows that $D^2/\partial D^2 \cong S^2$. $D^2/\partial D^2 = D^2-\partial D^2 + \{x\}$

Problem 9. (5 pts) In Figure (a) one has the identification on $[0, 1]^2$ given by the equivalence relation

$$(x,y) \sim (x',y') \Leftrightarrow x = x' \text{ and } y - y' \in \mathbb{Z}.$$

Describe the quotient space $[0,1]^2/\sim$.

On Figure (b) draw the identification given by

$$(x,y) \sim (x',y') \Leftrightarrow x - x' \in \mathbb{Z} \text{ and } y - y' \in \mathbb{Z}.$$

Describe the quotient space $[0,1]^2/\sim$.

Problem 10. (4 pts) Describe the space $\mathbb{R}P^2$. How can it be defined as a quotient space?

ay a sambal pager missi

The following are for graduate students only.

Problem 11. (5 pts) Consider the diagram below.

$$\mathbb{R}^{3} - \{0\} \xrightarrow{g} S^{2}$$

$$\downarrow^{\pi_{1}} \qquad \downarrow^{\pi_{2}}$$

$$\mathbb{R}P^{2} \xrightarrow{f} S^{2}/\sim$$

a. Describe the spaces and the functions g, π_1 and π_2 in the diagram.

b. Let U be open in $\mathbb{R}P^2$. Prove that $\mathbf{f}(U)$ is open.

Problem 12. (5 pts) Let X be a topological space and define the diagonal map $\Delta: X \to X \times X$ be defined as $\Delta(x) = (x, x)$ for $x \in X$.

a. Show that the diagonal map is continuous.

b. Prove that X is Hausdorff if and only if $\Delta(X) = \{(x, x) : x \in X\}$ is closed in $X \times X$.