

Dr. Russell Herman

Mr. David Glasier

MATHEMATICAL MODELING SUMMER VENTURES IN SCIENCE AND MATHEMATICS 2008

COURSE ABSTRACT

This course will be an introduction to the mathematical modeling of systems in nature. Electronic data acquisition and computer analysis of experiments may be incorporated. Specific topics shall include an introduction to mathematical model building, exploring simple hands-on and simulated experiments using microcomputers mathematical software. Students will have the opportunity to develop and analyze mathematical models of real world continuous and discrete processes.

WHAT IS MATHEMATICAL MODELING?

WHAT IS MATHEMATICAL MODELING?

- the process of representing a real-world phenomenon as a set of mathematical equations
- × Fields
 - + Natural sciences, engineering, social sciences
- × Classifications
 - + Linear vs nonlinear
 - + Deterministic vs stochastic
 - + Continuous vs discrete

EXAMPLES OF MODELS

POPULATION MODELS

6 billion

5 billion

1975

4 billion

6 billion

- S billion

- 4 billion

World Population Growth

After taking all of human history for population to reach one billion, it took only a little over a century to reach two billion in 1930. The third billion was added in just 30 years, the fourth in only 15 years.

http://www.sustainablescale.org/AreasofConcern/Population/PopulationandScale/QuickFacts.aspx

http://council.wisconsinforestry.org/deer/deerpop.php

PHYSICAL MODELS

Projectile Motion

http://historytogo.utah.gov/wntrrecskijump.html

http://ffden-2.phys.uaf.edu/211_fall2004.web.dir/Brendan_Karchere/Body%20Pages%20(2-5)/Page%203.html

PHYSICAL MODELS

Gravitation and Planetary Motion

http://resources.edb.gov.hk/physics/articlelE/binarystar/binarystar_e.htm

http://www.bnsc.gov.uk/lzcontent.aspx?nid=4709

http://www.astro.caltech.edu/~nlaw/lucky_palomar/

PHYSICAL MODELS

Oscillations

- × Mass-Spring
- × Pendula
- × Nonlinear Systems

http://www.energeticforum.com/renewable-energy/1222-gravitymotor-what-do-you-think.html

🖷 omega=0 rad/s, angle=0.2 rad, q=0.5, FD=1.2, Drive=0.667, L=9.81 m

http://physics.wku.edu/~barzilov/phys316/phys316aid.html

EPIDEMICS

transmission dynamics of a communicable diseases

"It's bird flu, but luckily we've caught it early."

http://www.scholarpedia.org/article/Image:Animated_SIR_Epidemic.gif

CHAOS

Chaotic Dynamics

http://www.andrewclem.com/Chaos.html

CHAOS IN THE SOLAR SYSTEM

FRACTAL ANALYSIS

- × Fractal Coastlines
- × Fractal Music
- × Iterated Function Systems
- × Mandelbrot and Julia Sets

http://home.pacbell.net/bulens/SelfSimi.htm

p://www.evl.uic.edu/aej/488/diagrams/fractal.gif

FOURIER ANALYSIS

Separate out harmonic frequencies from signals

PERCOLATION MODELS

- the behavior of connected clusters in a random graph
- × Examples
 - + Forest Fires
 - + Galaxy Formation
 - + Oil Fields
 - + Electrical Resistance

http://ccl.northwestern.edu/netlogo/models/Percolation

PURSUIT CURVES

http://en.wikipedia.org/wiki/Domain_coloring

COMPLEX DOMAIN COLORING

SPORTS MODELS

- × Spinning Tennis Ball
- × Vibrations of Hollow Core Bats
- Driving Cars with High Center of Gravity
- × Projectiles with Air Drag
- × Sky Diving
- × And more

http://mathworld.wolfram.com/Billiards.html

COMPUTING PI

- × Babylonians
- × Classic Formula
- × Binary vs Hexadecimal
- × Monte Carlo

http://zoonek2.free.fr/UNIX/48 R/16.html

DISTRIBUTION OF PRIMES

- How many primes are less than a given x?
- Are the twin primes infinite?
- × Are there patterns?

TWO MATHEMATICIAN PROBLEM

There are 2 mathematicians S and P. S knows the sum of two numbers and P knows the product of those same two numbers. Assume that the numbers are integers greater than 1 and that the mathematicians know this. For simplicity, let the first number be less than or equal to the second. Furthermore assume that each mathematician only speaks truly. The conversation goes as follows:

S: I know that you don't know what the two numbers are.

P: Now I do know what the two numbers are.

S: Now I know what the two numbers are.

What are the two numbers?

http://homepage.mac.com/billtomlinson/primes.html

Are there even numbers unexpressible as the sum of two primes? For example, there are four ways to sum up 2 primes to 36: 5+31, 7+29, 13+23, 17+19.

THE SEVEN BRIDGES OF KÖNIGSBERG

Prelude to Graph Theory

The city of Königsberg, Prussia (now Kaliningrad, Russia) is on the Pregel River, and included two large islands which were connected to each other and the mainland by seven bridges.

The problem is to decide whether it is possible to walk a route that crosses each bridge exactly once.

http://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigs berg

RANDOMNESS

CELLULAR AUTOMATA

WHAT DOES ONE NEED FOR MODELING?

METHODS IN SCIENCE

× Types

- + Observation
- + Experiment
- + Computation
- + Theory
- × Processing
 - + Simulation
 - + Visualization
 - + Data Analysis
- × End Products
 - + Prediction
 - + Verification
 - + New Models

COMPUTATIONAL SCIENCE

Using Computers to do science ... Shodor

SOFTWARE CLASSIFICATION

Numerical Computation 3*5+16 =
Symbolic Analysis (x+y)^2 =
Visualization

WHAT MATHEMATICS IS NEEDED?

- × Algebra
- × Trigonometry
- × Graphing Functions
- × Calculus
- × Linear Algebra
- × Differential Equations
- × ... and more

COURSE OUTLINE

- × Week 1
 - + Introduction to several models and software tools
- × Week 2
 - + Additional Models, form groups and pick topics, group interviews
- × Week 3
 - Group research begins, start presentations, finalize abstracts
- × Week 4
 - + Finish project and presentation
- × July 19th Final Presentation

And now ...

MODELING BY EXAMPLE

PROBLEM

Given a roll of paper find (without unrolling it) the **total length** of the paper on the roll. A single sheet may be provided for measuring.

POPULATION MODELS

U.S. POPULATION GROWTH

Rate of Change of a Quantity = Rate in – Rate out

- Rate of Change = (Population Change)/Time
- Rate in = Birth rate = bP
- Rate out = Mortality rate = dP

DERIVATION

Rate of Change of a Quantity = Rate in – Rate out

$$\frac{\Delta P}{\Delta t} = bP - dP \equiv kP$$

Let

× Time = [0, t] in N steps: $\Delta t = t/N$ × $P_n = n\Delta t$, n=0,1,2,...,N

$$\frac{P_1 - P_0}{t / N} = kP_0 \Longrightarrow P_1 = P_0 + \frac{kt}{N}P_0$$
$$P_2 = \left(1 + \frac{kt}{N}\right)P_1 = \left(1 + \frac{kt}{N}\right)^2 P_0$$

$$P_N = \left(1 + \frac{kt}{N}\right)^N P_0$$

DERIVATION (CONT'D)

$$P_{j} = \left(1 + \frac{kt}{N}\right) P_{j-1} \Longrightarrow P_{N} = \left(1 + \frac{kt}{N}\right)^{N} P_{0}$$

× As N gets large and Δt gets small, P_N is what?

 $P(t) = P_0 e^{kt}$

CURVE FITTING

- × Plot Data
- × Fit given function Regression Curve
- × Determine Parameters (like k)
- × Modifying Model
- × Use Graphing Calculators or Software

LOGISTIC GROWTH

Need to account for competition
 Rate out = Mortality rate = (d-mP)P = dP-mP²

$$\frac{\Delta P}{\Delta t} = bP - dP - mP^2 \equiv kP - mP^2$$

$$P = \frac{kP_0}{(k - mP_0)e^{-kt} + mP_0}$$

http://www.uncwil.edu/courses/webcalc/LABS/newlabs/index.htm