
The Stochastic KdV - A Review

Russell L. Herman

1 Wadati’s Work

We begin with a review of the results from Wadati’s paper 1983 paper [4] but
with a sign change in the nonlinear term. The key is an analysis of the stochastic
KdV equation given by

ut + 6uux + uxxx = ζ(t), (1)

where ζ(t) represents time-dependent Gaussian white noise. This noise has zero
mean and satisfies the statistical average

< ζ(t)ζ(t′) >= 2εδ(t− t′). (2)

For such time-dependent noise, the stochastic KdV equation can be trans-
formed into an unperturbed KdV equation,

UT + 6UUX + UXXX = 0, (3)

by introducing the Galilean transformation

u(x, t) = U(X,T ) + W (T ), (4)
X = x + m(t), (5)
T = t, (6)

m(t) = −6
∫ t

0

W (t′)dt′. (7)

This can be seen as follows. Under the above transformations we have from
calculus that the derivatives transform as

∂

∂x
=

∂X

∂x

∂

∂X
+

∂T

∂x

∂

∂T

=
∂

∂X
, (8)

and
∂

∂t
=

∂X

∂t

∂

∂X
+

∂T

∂t

∂

∂T

= −6W (T )
∂

∂X
+

∂

∂T
. (9)
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Using these transformations, we have

ζ(t) = ut + 6uux + uxxx

= (U + W )T − 6WUx + 6(U + W )UX + UXXX

= UT + 6UUX + UXXX + WT . (10)

Defining
ζ = WT ,

or

W (t) =
∫ t

0

ζ(t′) dt′, (11)

leads to the KdV equation in (3).
We next consider the one soliton solution. Let

U(X,T ) = 2η2 sech2(η(X − 4η2T −X0)) (12)

be a solution of Equation (3). Then, the above transformation leads directly to
an exact solution of the stochastic KdV equation (1):

u(x, t) = 2η2 sech2

(
η

(
x− 4η2t− x0 − 6

∫ t

0

W (t′) dt′
))

+ W (t). (13)

Now we are interested in averaging over and ensemble of solutions. Namely,
one considers what happens on average to the soliton under various realizations
of the noise. For example, we could consider the average of the solution, denoted
by < u(x, t) >, and determine how the soliton behaves, such as the effect of the
noise on the soliton’s amplitude. Thus, we have that

< u(x, t) >= 2η2

〈
sech2

(
η

(
x− 4η2t− x0 − 6

∫ t

0

W (t′) dt′
))〉

.

Wadati computes this by first turning the hyperbolic function into a series
of exponentials. Formally, one can write

sech2z =
4

(ez + e−z)2

=
4e2z

(1 + e2z)2

= −2
d

dz

1
1 + e2z

= −2
d

dz

( ∞∑
n=0

(e2z)n

)

= 2
∞∑

n=1

(−1)n+1ne2nz. (14)
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Wadati then proceeds by computing.

< u(x, t) >= 8η2
∞∑

n=1

(−1)n+1n

〈
exp

[
2nη

(
x− 4η2t− x0 − 6

∫ t

0

W (t′) dt′
)]〉

.

In order to complete this computation, some useful relations (which will need
to be confirmed) are needed:

< W (t) >= 0. (15)

< W (t1)W (t2) >= 2ε min(t1, t2). (16)

< exp (cW (t)) >= exp
(

1
2
c2 < W 2(t) >

)
. (17)

We can use these to show that

〈
exp

(
±12nη

∫ t

0

W (t′) dt′
)〉

= exp
(

72n2η2

∫ t

0

∫ t

0

< W (t1)W (t2) > dt2dt1

)

= exp(48n2η2εt3). (18)

(The average in the exponential is computed later.)
This leads to the following form:

< u(x, t) >= 8η2
∞∑

n=1

(−1)n+1nena+n2b, (19)

where
a = 2η(x− x0 − 2η2t),

b = 48η2εt3.

In principle, this should be sufficient. However, Wadati goes on to develop
expressions that analytically give an interpretation to this result and allow for
asymptotic estimates of the behavior of the solution to the stochastic KdV.
(We should note at this point that the solution is defined in terms of a divergent
series! We will discuss this later.)

The key to obtaining useful analytic expressions was noted by Wadati. Dif-
ferentiating the series by a and b leads to the partial differential equation

wb = waa

for w(a, b) =< u(x, t) > . Furthermore, we have that

w(a, 0) = 2η2 sech2 a

2
.
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This is an initial-boundary value problem for the heat, or diffusion, equation on
the real line. It is solved using Fourier transform methods. Namely, we define
the Fourier transform

ŵ(k, b) =
∫ ∞

−∞
w(a, b)e−iak da, (20)

and its inverse transform

w(a, b) =
1
2π

∫ ∞

−∞
ŵ(k, b)eiak dk. (21)

The heat equation leads to the simple initial value problem

ŵb = −k2ŵ, (22)

where

ŵ(k, 0) = 2η2

∫ ∞

−∞
sech2 a

2
e−iak da

= 8η2 πk

sinh πk
. (23)

Therefore,

ŵ(k, b) = 8η2 πk

sinhπk
e−bk2

(24)

and the solution is thus found from the inverse Fourier transform as

u(x, t) =
4η2

π

∫ ∞

−∞

πk

sinhπk
eiak−bk2

dk. (25)

Wadati indicates that this is simply done using the convolution theorem. Namely,
we note that ŵ(k, b) = f̂(k)ĝ(k, b) for

f̂(k) = 8η2 πk

sinh πk

and
ĝ(k, b) = e−bk2

.

The inverse transforms for these are given by

f(a) = 2η2 sech2 a

2

and
g(a, b) =

1√
4πb

e−a2/4b.
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The last expression is just the statement the the Fourier transform of a Gaussian
is a Gaussian. Convolving these functions, we have

< u(x, t) > = w(a, b)
= (f ∗ g)(a)

=
∫ ∞

−∞
f(s)g(a− s) ds

=
∫ ∞

−∞

(
2η2 sech2 s

2

)(
1√
4πb

e−(a−s)2/4b

)
ds

=
η2

√
πb

∫ ∞

−∞
e−(a−s)2/4b sech2 s

2
ds. (26)

This is the exact solution to which we can compare any simulation results.
To date it does not appear that any one has actually done this. Most of the
focus of any simulations are with respect to the asymptotic results that Wadati
has derived from this solution [3]. Namely, for small times (b = 48η2εt2 < 1)
one can show that

< u(x, t) >= 2η2
∞∑

n=0

bn

n!
∂2n

∂a2n
sech2 a

2
. (27)

For large times (b = 48η2εt2 > 1) one can show that

< u(x, t) >=
4η2

√
π

(
1 +

∞∑
n=1

(22n − 2)Bnπ2n

(2n)!
∂n

∂bn

)
e−a2/4b

√
b

. (28)

Most focus on the t →∞ result that

< u(x, t) >∼ η√
3πε

1
t3/2

exp
(
− (x− x0 − 4η2t)2

48εt3

)
.

Lets look at some results in a special case. The solutions for small [large]
times based upon Equation (27) [Equation (28)] is given in Figure 1 [Figure 2].

The amplitudes of the solutions in Figures 1-2 are shown in Figure 3. Note
that the large time results probably should start at later times. Then one might
be able to see how the two extremes might match smoothly in the intermediate
region. In fact, one might try to use some type of expansion about b = 1.

The exact integral, given by Equation (26), can be numerically integrated.
We show a comparison of the exact solution in Figure 4 with that of a simulated
result as shown in Figure 5.

2 Code

The code used to compare the simulated and numerical integration of Equation
(26).
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Figure 1: The solution for small times based upon Equation (27).
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Figure 2: The solution for large times based upon Equation (28).
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Figure 3: The amplitude of the solutions in the last two figures.

Figure 4: The exact solution using Equation (26).
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Figure 5: The solution generated by doing a simulation of the stochastic KdV
equation.
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Figure 6: Comparison of the amplitudes from the exact solution and a simulation
as provided in the code below.
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% Soliton Parameters
eta=1.0; x0=-5.0; epsilon=0.1; mu=sqrt(2*epsilon);

% Mesh Parameters
N=200; Tsteps=1000; a=-10; b=50; x=linspace(a,b,N+1); dx=(b-a)/N;
dt=dx^3/4; t=(0:Tsteps-1)*dt;

% Stochastic Run
M=200; uu=zeros(Tsteps,N+1);

for k=1:M
k
r=randn(Tsteps,1);
w=zeros(Tsteps,1);
Iw=zeros(Tsteps,1);
w(1)=0;
Iw(1)=w(1)/2*dt;
for i=2:Tsteps

w(i)=w(i-1)+mu*sqrt(dt)*r(i);
Iw(i)=Iw(i-1)+(w(i-1)+w(i))/2*dt;

end

u=zeros(Tsteps,N+1);
for i=1:Tsteps;

for j=1:N+1;
u(i,j)=w(i)+2*eta^2*(sech(eta*(x(j)-4*eta^2*t(i)-x0-6*Iw(i)))).^2;

end
end

uu=uu+u; end uu=uu/M;

% Exact Solution
for j=1:N+1

u(1,j)=2*eta^2*(sech(eta*(x(j)-x0)))^2;
end for i=2:Tsteps;

i
B=48*eta^2*epsilon*t(i)^3;
for j=1:N+1;

A=2*(eta*(x(j)-x0)-4*eta^3*t(i));
F = @(s)(sech(s/2)).^2.*exp(-(A-s).^2/4/B);
u(i,j) =eta^2/sqrt(pi*B)*quad(F,-20,20);

end
end

% Results
figure(1) mesh(x,t,u) title(’Exact Solution’) figure(2)
mesh(x,t,uu) title(’Stochastic KdV’) figure(3)
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plot(t,max(uu’),’b.’) hold on plot(t,max(u’),’r-’)
legend(’Averaged Solution’,’Exact Solution’,2) hold off

3 Problems

There are several problems with Wadati’s derivation. These also appear else-
where in the literature references to Wadati’s paper.

First, we note that the series expansion for the sech2z is not quite right. We
should instead have derived it as follows (for z 6= 0):

sech2z =
4

(ez + e−z)2

=
4e−2|z|

(1 + e−2|z|)2

= 2 sgn(z)
d

dz

1
1 + e−2|z|

= 2 sgn(z)
d

dz

( ∞∑
n=0

(−e−2|z|)n

)

= 2
∞∑

n=1

(−1)n+1ne−2n|z|, (29)

This accounts for the convergence of the geometric series used in the derivation.
Namely, in the original derivation, one should have noted that |e2z| < 1, or
z < 0. This new derivation accounts for the z > 0 case. Konotop and Vázquez
[2] appear to have used this in their review of Wadati’s derivation. They present
the infinite series result as

< u(x, t) >= 8η2
∞∑

n=1

(−1)n+1ne−n|a|+n2b. (30)

There also appears to be a problem with the derivation of the average.
Wadati should actually have computed

< u(x, t) >= 8η2
∞∑

n=1

(−1)n+1n

〈
exp

[
−2nη

∣∣∣∣x− 4η2t− x0 − 6
∫ t

0

W (t′) dt′
∣∣∣∣
]〉

.

One could get around this problem by computing the average for space-time
regions where x − 4η2t − x0 − 6

∫ t

0
W (t′) dt′ is definitely of one sign. Another

approach would instead be to directly expand

u(x, t) = 2η2 sech2(η(x− x0 − 4η2t)− 6η

∫ t

0

W (t′) dt′) ≡ 2η2 sech2(θ + σ)

about σ = 0 for

σ ≡ −6η

∫ t

0

W (t′) dt′.
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We have that

2η2 sech2(θ + σ) = 2η2
∞∑

n=0

σn

n!
∂n

∂θn
sech2θ. (31)

The average can now be computed as

< u(x, t) >= 2η2
∞∑

n=0

< σn >

n!
∂n

∂θn
sech2θ (32)

provided that we can compute

< σn >=

〈(
−6η

∫ t

0

W (t′) dt′
)n

〉
. (33)

Herman [1] shows that such averages can be computed based upon the nature
of the Gaussian noise as

< σn >=
{

0, n odd,
(2`− 1)!! < σ2 >`, n = 2`, even.

(34)

Thus, we just need to compute < σ2 > .
To see how this is done, we have

< σ2 > =
〈

36η2

∫ t

0

W (t1) dt1

∫ t

0

W (t2) dt2

〉

= 36η2

∫ t

0

∫ t

0

< W (t1)W (t2) > dt1dt2

= 72εη2

∫ t

0

∫ t

0

min(t1, t2) dt1dt2

= 72εη2

∫ t

0

(∫ t2

0

min(t1, t2) dt1 +
∫ t

t2

min(t1, t2) dt1

)
dt2

= 72εη2

∫ t

0

(∫ t2

0

t1 dt1 +
∫ t

t2

t2 dt1

)
dt2

= 72εη2

∫ t

0

(
t22
2

+ t2(t− t2)
)

dt2

= 24εη2t3. (35)

Inserting these results in Equation (32) yields

< u(x, t) > = 2η2
∞∑

n=0

< σn >

n!
∂n

∂θn
sech2θ

= 2η2
∞∑

`=0

< σ2 >`

(2`)!
(2`− 1)!!

∂2`

∂θ2`
sech2θ
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= 2η2
∞∑

`=0

< σ2 >`

2``!
∂2`

∂θ2`
sech2θ

= 2η2
∞∑

`=0

(12εη2t3)`

`!
∂2`

∂θ2`
sech2θ. (36)

In order to see the agreement with Wadati’s result for small b = 48εη2t3, we
need to set θ = a/2. Noting that ∂2`

∂θ2` = 22` ∂2`

∂a2` , we obtain

< u(x, t) >= 2η2
∞∑

`=0

(48εη2t3)`

`!
∂2`

∂a2`
sech2 a

2
= 2η2

∞∑

`=0

b`

`!
∂2`

∂a2`
sech2 a

2
.

We further note that this solution again satisfies the heat equation and
that for b = 0 this solution reduces to the soliton initial condition. Thus, we
have seemingly bypassed any problem with the computing the average with an
absolute value. However, this series is divergent for b > 1. This divergence
problem still needs to be addressed.
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