

Physics of Compact Objects Fall 2023

Dr. R. L. Herman Physics & Physical Oceanography UNC Wilmington hermanr@uncw.edu, OS 2007J

Black Holes White Dwarfs Neutron Stars Binary Pulsars Active Galactic Nuclei Quasars Radio Astronomy Recent Observations

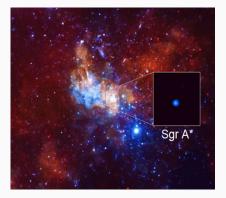
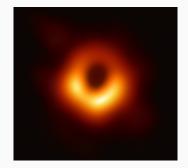


Figure 1: M87 Jet.

Physics of Compact Objects R. L. Herman, UNCW Fall 2023 1/20

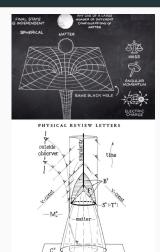
Compact Astrophysical Objects


- Endpoints of stellar evolution.
 - White dwarfs.
 - Neutron stars.
 - Black holes.
- Constituents of galaxies
- Extreme Objects at centers of
 - Milky Way Sagittarius A*
 - $4.1 imes 10^6 M_{\odot}$,
 - M87* in Virgo Cluster - $6.5 \times 10^9 M_{\odot}$.
 - -0.5×10 MV
- Detection modes
 - Neutron stars, BHs
 - radio, X-ray emissions.
 - White dwarfs optical.

https://www.nasa.gov/sites/default/ files/chandra20140105.jpg

Black Holes

- 1783 John Michell
 - applied gravity to corpuscules.
 - predicted dark stars.
- 1796 Pierre-Simon Laplace
 - predicted point of no return.
- 1915 Albert Einstein GR.
- 1916 Karl Schwarschild - Spherical symmetry.
- 1939 J. Robert Oppenheimer and Hartland Snyder - Stellar collapse.
- 1939 Einstein denied.
- 1967 John Wheeler coined name.
- 1970 C.V. Vishveshwara.
 - Stability of Schwarzschild BH.
 - Quasinormal modes, ring down.


- 1964, 1971 Cygnus X-1
 - 6070 lyr, $14.8 M_{\odot}.$
 - $\it{R_s} =$ 44 km. [1M $_{\odot} \rightarrow$ 2.95 km]
- List of Black Holes

Physics of Compact Objects

R. L. Herman, UNCW Fall 2023 3/20

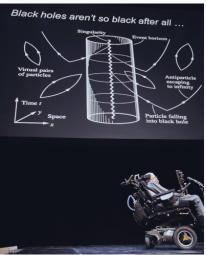
Black Holes Have No Hair

- Oppenheimer and Snyder assumed
 - Perfectly spherical.
 - Non-rotating.
 - No imperfections.
 - Controversial.
- 1964 Roger Penrose
 If matter has a positive energy-density, a trapped surface has a singularity.
- 1966 Stephen Hawking The Singularity Theorem is for the whole universe, and works backwards in time.
- 1967 Werner Israel 1st Schwarzschild.
- 1972 Jacob Bekenstein (via Wheeler)
 - "Black holes have no hair."
 - just mass, angular momentum, charge.

Figure 3: Video.

Physics of Compact Objects R. L. Herman, UNCW Fall 2023 4/20

Black Hole Thermodynamics


- 1972 Jacob Bekenstein Black holes should have entropy.
- 1974 Stephen Hawking
 - They have a temperature.
 - And emit Hawking radiation.

$$S = \frac{kA}{4\ell_p^2}, \quad kT = \frac{hc^3}{16\pi^2 GM}$$

- Laws of BH Thermodynamics.
- Black Holes Evaporate. Where does information go?
- Holographic Principle.
 - t'Hooft, Susskind.
 - Information Paradox.
 - AdS/CFT correspondence.

Physics of Compact Objects

White Dwarfs

- 1783 -William Herschel.
 - 40 Eridani, triple system, 17 lyr
 1910 Henry Norris Russell, Edward
 Charles Pickering and Williamina Fleming
 identified it as Spectral Class A.
- 1844 Friedrich Wilhelm Bessel.
 - Sirius (Canus Major, Dog star, 8.6 lyr) and Procyon (Canus Minor, 12 lyr)
 - Companion white dwarfs.
- 1922 Coined by Willem Luyten.
 - over 9000, 0.5-0.7 $M_{\odot}[0.8\%\text{-}2\%~R_{\odot}].$

White Dwarf Stars Near The Earth

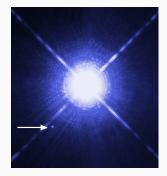


Figure 4: Sirius A and B.

https://en.wikipedia.org/wiki/White_dwarf

2018 - Astronomers Find Planet Vulcan Right Where Star Trek Predicted it.

Subrahmanyan Chandrasekhar (1910-1995)

- 1930 At 19, traveled to England.
- Read William A. Fowler's 1926 e⁻-degeneracy.
 - In fermion gas, electrons move into unfilled energy levels.
 - Particle density increases and electrons fill the lower energy states.
 - Other e⁻'s occupy states of higher energy (even at low temperatures).
 - Degenerate gases resist. compression due to the Pauli exclusion principle.
 - Generates a *degeneracy pressure*.
 - Applied Fermi-Dirac statistics.
- Degeneracy pressure vs gravity
 - Chandrasekhar limit $M \sim 1.44 M_{\odot}$.

Neutron Stars

- 1932 Chadwick discovers neutron.
- 1933 Walter Baade, Fritz Zwicky - neutron stars result of supernovae.
- 1931,1937 Lev Landau Work on white dwarfs and neutron stars.
- 1939 Oppenheimer-Volkoff-Tolman - max $M \sim 0.75 M_{\odot}$ [Now, 1.5-3M $_{\odot}$].
- 1965 Crab Pulsar, 1054 Supernova - Antony Hewish, Samuel Okoye.
- 1967 Scorpius X-1, losif Schlovsky.
- 1967 Jocelyn Bell, Antony Hewish - PSR B1919+21 first radio pulsar.
- 1974 Taylor-Hulse binary pulsar.

Figure 5: Crab Nebulae.

Taylor-Hulse Binary Pulsar PSR B1913+16

- Pulsars: pulsating radio star. Rapidly rotating neutron star.
- Magnetic lighthouse.
- Regular flashing
 - 2x each cycle 17 per second.
- Regular variations 7.75 hrs and 3s differences due to elliptical orbit.
- 305 m Arecibo Radio Telescope in Puerto Rico. (Collapse, Nov. 2020)
- 1993 Nobel Prize
 - Joe Taylor and Russell Hulse.

Figure 6: Binary Pulsar and Arecibo Telescope.

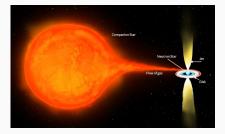
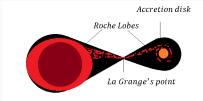
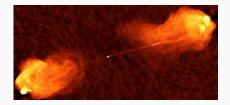

- Einstein's Prediction of radiation loss as gravitational waves.
- Calculated masses, periastron (closest distance), and apastron (furthest).
- Energy Loss: $\frac{dE}{dt} = 7.35 \times 10^{24}$ W.
- Orbital period change: $\frac{dT}{dt} = 7.65$ milliseconds/yr.
- First indirect observation of gravitational waves.

Figure 7: Binary Pulsar Data

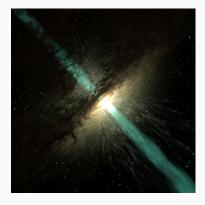

Accretion in Binary Systems

- 1960s X-Ray Astronomy.
- Scorpius X-1: 1-10 keV.
- 20 sources by end of decade.
- Cygnus X-1 varies in time.
- Accretion.
 - Gas forms disk around compact object.
 - Friction leads to spiraling inward.
 - Gravity and friction compress, raise temperature.
 - Leads to EM emission.

Accretion History


- 1926 Arthur Eddington accretion rate depends on velocity, density gravity focuses towards CM.
- Hoyle, Lyttleton rate greater with collisions.
- 1952 Herman Bondi
- Algol in Perseus
 eclipsing binary, 2.9 days.
- Small blue hidden by larger red.
- Blue star tending to red giant.
- Used to be red, overflowed Roche lobe - past Lagrange pt.

Active Galaxy Nuclei


- 1918 Heber Curtis
 - Straight ray from M87.
- 1920 Island Universes
 - Curtis-Shapley Debate
- Strange behavior from galaxy centers.
 - Too much blue, UV.
 - Bright.
 - Active galaxies with AGN.
 - Quasars, starbursts.
- Karl Seyfert
 - Intense blue nuclei.
 - Very high velocities.
 - Seyfert galaxies.

- 1954 W. Baade, R. Minkowski
 - Cynus A
 - 300 \times M31 distance.
 - Dumbbell lobes.
- 1956-9 Geoffrey Burbidge Lobe energy very high.

Quasars - Quasi Stellar Objects

- 1963 Hazard, et al. pinpoint 3C 273.
- 1963 Maartin Schmidt, 3C 273.
 - Spectrum: 16 % redshift
 - Distance: 10⁹ lyr.
 - Fluctuating brightness over 1 mo.
- Quasars QSOs.
- Hubble Telescope detects many.
- AGN Properties:
 - Energy emitted large rate.
 - Extremely compact.
 - Not normal radiation.
 - Gas moves at very high speeds.
- Manifestation of massive BHs.

Massive Black Holes?

- Mass Compactness, M/R, Limits
 - Upper limit on R
 - brightness variation. R < ct.
 - Lower limit on M luminosity.
 - Estimate lifetime energy.
 - luminosity \times age.
 - Eddington limit.
 - 100 million to billions M_{\odot} .
 - $M/R > .001c^2/G$.
- Hoyle, Burbidge only gravitational collapse can supply energy.

Quasar Models

- 1969 Donald Lynden-Bell
 - Quasars powered by accretion.
 - BHs > 100 million M_{\odot} .
- Sources of Emission
 - Accretion disk like X-Ray binaries.
 - EM processes
 - Tap spin energy.
 - A flywheel with disk as brake.
- Different emissions
 - X-Rays captured by disk.
 - Turned to UV, optical, IR.
- Need Mass, Spin, and Orientation.

Figure 8: M87 jet.

Radio Astronomy

- 1931 Karl Jansky
 - Bell Labs telecommunications.
 - Sensitive antenna
 - transaltantic cable noise.
 - Not terrestrial!.
- 1944 Grote Reber
 - First sky map of Milky Way.
 - Radio Emissions, Cygnus.
- 1950s Martin Ryle
 - Idea of arrays of dishes.
- 1970s Telescope arrays.
- Detailed hot spots and lobes.

VLA - Very Large ArraySocorro, NM.27 linked radio telescopes.25 m diameter.Y-shaped across 40 km.Comparable to Hubble resolution.

Hot Spots and Lobes

- Picked up double radio sources.
- From galaxy cores.
- Superhot, magnetized gas ejection?
- 70s Blobs powered by twin streams of gas from galactic core hotspot.
 Source of radio waves.
- Travels through intergalactic medium, pushing matter away at 60% c.
- Deceleration leads to shock waves.
- Energy of relativistic e⁻'s and magnetism. - Synchrotron radiation.
- Hot spot 100,000 to $10^6 \mbox{ yrs.}$
- Moves to lobes, persists 10^8 yrs.

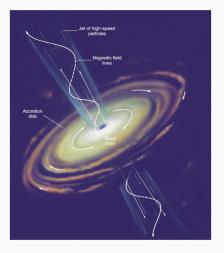
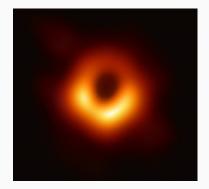


Figure 9: Radio Galaxies and Quasars

Physics of Compact Objects R. L. He


R. L. Herman, UNCW Fall 2023 18/20

- 1978 Jets only theoretical.
- Not seen to this point.
- VLA observations changed that.
- Late 1978 SS 443 X-ray binary.
- Bruce Margon, et al.
 Spectrum had three parts: Normal, red shifted, blue shifted.
- Rotating jets precessing 163 days.
- Stability due to high speed, low density, stiff B-field.
- Can lead to radio trail bend.
- Then there is the core using VLBI.

Black Holes - The Last Decade

- 2014- Interstellar, the movie.
 - Black hole visualization.
- 2016 Gravitational Waves, LIGO.
- 2019 First picture, Event Horizon.
- Nobel Prizes:
 - 2011 Saul Perlmutter, Brian P. Schmidt and Adam G. Riess.
 - 2017 Rainer Weiss, Barry C. Barish and Kip S. Thorne.
 - 2019 James Peebles, Michel Mayor and Didier Queloz.
 - 2020 Roger Penrose, Reinhard Genzel and Andrea Ghez
- Now, back to physics ...

