Elliptic functions and Elliptic Integrals

R. Herman

Nonlinear Pendulum

We motivate the need for elliptic integrals by looking for the solution
of the nonlinear pendulum equation,

0 + w?sin6 = 0. (1)

This models a mass m attached to a string of length L undergoing
periodic motion. Pulling the mass to an angle of §) and releasing it,
what is the resulting motion?

We employ a technique that is useful for equations of the form

6+F()=0
when it is easy to integrate the function F(6). Namely, we note that
% Béz + /e(t) F(¢) d¢] = (64 F(6))6.
For the nonlinear pendulum problem, we multiply Equation (1) by 6,
06 + w?sin6f = 0

and note that the left side of this equation is a perfect derivative.

Thus,

% Béz — w?cos 0} =0.

Therefore, the quantity in the brackets is a constant. So, we can write

%92 — w?cosh =c. (2)

The constant in Equation (2) can be found using the initial con-
ditions, 8(0) = 6p, 6(0) = 0. Evaluating Equation (2) at t = 0, we
have

¢ = —w? cos .

Solving for 6, we obtain

do

T 2(cos6 — cos ).

This equation is a separable first order equation and we can rear-
range and integrate the terms to find that

%92 — w?cosh = —w? cos by. (3)
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Figure 1: A simple pendulum consists
of a point mass m attached to a string of
length L. It is released from an angle 6.
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We can solve for § and integrate the differential equation to obtain

dao
t=[at= [ .
w+/2(cos @ — cosbp)

At this point one says that the problem has been solved by quadra-
tures.Namely, the solution is given in terms of some integral. We will
proceed to rewrite this integral in the standard form of an elliptic
integral.

Using the half angle formula,

0 1

)

- —(1—

sin” 5 2( cosf),

we can rewrite the argument in the radical as

cosf —cosbfy =2 {Sin2 92—0 — sin? g] .

Noting that a motion from 6 = 0 to 6 = 6 is a quarter of a cycle, we

have that . "
2 0
r== | . @)
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This result can now be transformed into an elliptic integral.” We

define
B sin%
 sin 970
and
k = sin 9—0.
2

Then, Equation (4) becomes

(5)

4 1 dz
T:w%;¢uﬁx1k%q

This is done by noting that dz = % cos §d = 5 (1 — k?22)1/2 46 and
that sin? 970 —sin® § = k?(1 — z2). The integral in this result is called
the complete elliptic integral of the first kind.

* Elliptic integrals were first studied by
Leonhard Euler and Giulio Carlo de’
Toschi di Fagnano (1682-1766) , who
studied the lengths of curves such as
the ellipse and the lemniscate,

(X2+y2)2 — xZ 7y2.

The complete elliptic integral of the first
kind.
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Elliptic Integrals of First and Second Kind

There are several elliptic integrals. They are defined as

¢ de
F(¢.k) = /0 T eaze (6)
_ /SimP dt )
o JI-P)1-kB) 7
n/2 a9
ki) = /0 V1 —k2sin? 6 ®
_ /1 dt ©
0 /(1—1)(1—k2t2) ?
E(¢,k) = /0¢ 1—k2sin® 046 (10)
= /Simp 7\/@ dt (11)
0 V1—1#
E(k) = /0 " T K2sin6d (12)
(13)
11— k212
= | g (14)
Elliptic Functions

Elliptic functions result from the inversion of elliptic integrals. Con-
sider

¢ a6
u(sing, k) = F(¢, k) = /()Tsng (15)

_ /Si“‘f’ dt 6)
o a1 -kR)

Note:F(¢,0) = ¢ and F(¢,1) = In(sec¢ + tan¢). In these cases F is
obviously monotone increasing and thus there must be an inverse.
The inverse of F(u, k) is sn (u,k) = sin¢ = sinamu, where

m(u,k) = ¢ = F L (u,k)

am is called the amplitude. Note that sn (u,0) = sinu and sn (u,1) =
tanh u.
Similarly, we have

cn (u,k) dt
u = : (17)
/0 Ja-2)2 +iep)

4 = /dl’l (u,k) At (18)
" Ja-ee-
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Figure 2: Plots of the Jacobi elliptic
functions for m = 0.75.

The Jacobi elliptic functions for m = 0.75 are shown in Figure 2.

We note that these functions are periodic. The Jacobi elliptic func-

tions are related by

sing = sn(u,k)
cos¢p = sn(uk)
\/1—k2sin?¢ = dn(uk)

Furthermore, we have the identities

sn’u+ cn?u = 1,

(19)
(20)
(21)
(22)

K sn?u+ dn?u =1.

Derivatives Derivatives of the Jacobi elliptic functions are easily

found. First, we note that

d(snu) d(snu)dp \/T_
i = dg 7, = onu 1—k?sin“¢ = cnudnu,

where
du 1

W iy

results from integrating F(¢, k).

d
Similarly, we have m cnu = —snudnu, and — dnu = —k*snucnu.

du

Differential Equations
Let y = snu. Using

d(snu) = cnudnu
du !
we have P
ay _ 2 122
24— VI-2 1R,
or

(j")z = (1)1 - K.

4
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Differentiating with respect to u again, we have the nonlinear second
order differential equation

" _ 7(1 +k2)y+2k2]/3.

We note that this differential equation is amenable to solution
using Simulink. Such a model is shown in Figure 3.

1 Y o 1 y | Figure 3: Simulink model for solving
S 7] s " Y= —(1+Kk)y +2k%y°.
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2
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Fcn
Periodicity
Consider
¢+2m 40
F(¢p+2mk) = / —_—
V1 —k2sin* 6

/4’ a6 n /‘PHH do
V1 —k2sin? 0 V1—k2sin? 0
27
— Flgk)+ [
V1 k2 sin?
= F(¢/k) +4K(k). (23)
Since F(¢ + 27, k) = u + 4K, we have
n (u+4K) = sin(am(u +4K)) = sin(am(u) +27) = sinam(u) = snu.

In general, we have

sn(u+2K,k) = —sn(uk) (24)
on (u+2K,k) = —on(u,k) (25)
dn(u+2K,k) = dn(uk). (26)

The plots of sn (), cn (1), and dn(u), are shown in Figures 4-6.

5



ELLIPTIC FUNCTIONS AND ELLIPTIC INTEGRALS

Figure 4: Plots of sn (u,k) for m =
0,0.25,0.50,0.75,1.00.

Figure 5: Plots of cn (u,k) for m =
0,0.25,0.50,0.75,1.00.

Complex Arguments

Values of the Jacobi elliptic functions for complex arguments can be
found using Jacobi’s imaginary transformations,

sn (iu, k) = isc(u,k’) (27)
en (iu, k) = nc(u,k) (28)
dn(iu,k) = dec(uk'). (29)

Figure 6: Plots of dn (u,k) for m =
0,0.25,0.50,0.75,1.00.
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These results are found by rewriting the elliptic integral. We show
this for the first result by considering u = F(¢, k) in the form

E( k)—/¢ de
) = 0 1—k2sin%0

We introduce the transformation

. 2t
sinf = m,
2t \?
COSG == 1 - <Ht2>
1-12
s e (50)
This gives
2(1+12) — 42 2(1—1?)
= = t
cos0do A+ (1+t2)2d'
2
ordf = lszt

Applying this variable substitution to the elliptic integral, we have

/<P

u = -

0 1—k2sin?6
dt

1) /1R (1%2)2

= 2

s dt
2,
Jo /(1 +12)2 — 4k282
s dt
2/ :
0 /1+2(1—2k2)2 +t4

Inserting t = ix, and noting that the integrand is an even function

(31)

of x, we obtain

—is dx
u =
/ V1—=2(1 = 2k2)x2 x4
~ —i/ ax (32)
0 VI-_2(1_2k2)a2 b >
Introducing k2 = 1 — k', leads to
/ dx
u
\/1 —k'%))x2 4 x4
/ dx
\/1 (=14 k)2 + x4
iu (33)

/0 \/1+2(1 —k’z)x2+x4.
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Therefore, we have Equation (33) is the same as Equation (31) and
the inverse function is sn (iu, k).
Using the transformation, we find that sn (iu, k') is pure imagi-
nary:
2is
1-¢2
.sin ¢
cos ¢
sn (u, k)
l—
en (u, k)
= isc(uk). (34)

sn (iu, k') =

We can exchange k with k" to obtain the final result sn (iu, k) =
isc(u, k).
There is a problem when cn (u,k’") = 0. Noting that

sn(0,k) =0, n(0,k)=1, dn(0,k) =1,

and
sn (K, k) = ]_, cn (K, k) = 0, dn (K, k) = k//

and that cn (u, k) has period 4K, then en (u,k') = 0 foru = (2n +
1)K'. Thus, sn (iu, k) has imaginary period of 2iK’.

Plots of the Jacobi elliptic functions in the complex plane using
domain coloring for k = 0.7 are shown in Figures 7-9. In this case
we have K(.7) = 1.8457 and K'(.7) = K(v/1—.7%2) = 1.8626. This
gives the periods for sn(u) as 7.3828 and 3.7253i, which can be seen
in Figure 7.

Figure 7: Domain coloring plot of
sn (u,k) for u = x +iy and k = 0.7.
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Figure 8: Domain coloring plot of
cn (u,k) for u = x+iy and k = 0.7.

Figure 9: Domain coloring plot of
dn (u,k) for u = x +iy and k = 0.7.
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Addition Formulae Letting s; = sn (u;), for i = 1,2, etc., we have

snucnvdnv+ snvenudnu

n(u+v) = 1 —k2 snzxsnzy . (35)

_ cnucnv— snusnvdnudno
nu+o) = 1—k?sn2xsn2y ' (36)

dnudnv—k?snusnvenucno

dn (u + U) = 1_ k2 Snzx Snzy . (37)

From these formulae and the Jacobi imaginary transformation, one
can derive formula for complex arguments.

Arithmetic-Geometric Mean

The Arithmetic-Geometric Mean (AGM) iteration of Gauss is given
by a two-term recursion

ay + by,
a?’l-‘rl - 2 7

bl’l+l =V anbn. (38)

These sequences converge to a common limit,

lim a, = lim b, = M(ay, by).

n—o00 n—oo

In 1799 Gauss saw that

W~ h i

up to eleven decimal places. This is an example of

T
0 \/1

Letting x = sina, we can write

sm2 0

1

T
K(cosa) = 2 M1, sing)’
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