
Elliptic functions and Elliptic Integrals
R. Herman

Nonlinear Pendulum

We motivate the need for elliptic integrals by looking for the solution
of the nonlinear pendulum equation,

θ̈ + ω2 sin θ = 0. (1)

This models a mass m attached to a string of length L undergoing
periodic motion. Pulling the mass to an angle of θ0 and releasing it,
what is the resulting motion?
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L

Figure 1: A simple pendulum consists
of a point mass m attached to a string of
length L. It is released from an angle θ0.

We employ a technique that is useful for equations of the form

θ̈ + F(θ) = 0

when it is easy to integrate the function F(θ). Namely, we note that

d
dt

[
1
2

θ̇2 +
∫ θ(t)

F(φ) dφ

]
= (θ̈ + F(θ))θ̇.

For the nonlinear pendulum problem, we multiply Equation (1) by θ̇,

θ̈θ̇ + ω2 sin θθ̇ = 0

and note that the left side of this equation is a perfect derivative.
Thus,

d
dt

[
1
2

θ̇2 −ω2 cos θ

]
= 0.

Therefore, the quantity in the brackets is a constant. So, we can write

1
2

θ̇2 −ω2 cos θ = c. (2)

The constant in Equation (2) can be found using the initial con-
ditions, θ(0) = θ0, θ̇(0) = 0. Evaluating Equation (2) at t = 0, we
have

c = −ω2 cos θ0.

Solving for θ̇, we obtain

dθ

dt
= ω

√
2(cos θ − cos θ0).

This equation is a separable first order equation and we can rear-
range and integrate the terms to find that

1
2

θ̇2 −ω2 cos θ = −ω2 cos θ0. (3)
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We can solve for θ̇ and integrate the differential equation to obtain

t =
∫

dt =
∫ dθ

ω
√

2(cos θ − cos θ0)
.

At this point one says that the problem has been solved by quadra-
tures.Namely, the solution is given in terms of some integral. We will
proceed to rewrite this integral in the standard form of an elliptic
integral.

Using the half angle formula,

sin2 θ

2
=

1
2
(1− cos θ),

we can rewrite the argument in the radical as

cos θ − cos θ0 = 2
[

sin2 θ0

2
− sin2 θ

2

]
.

Noting that a motion from θ = 0 to θ = θ0 is a quarter of a cycle, we
have that

T =
2
ω

∫ θ0

0

dθ√
sin2 θ0

2 − sin2 θ
2

. (4)

This result can now be transformed into an elliptic integral.1 We

1 Elliptic integrals were first studied by
Leonhard Euler and Giulio Carlo de’
Toschi di Fagnano (1682-1766) , who
studied the lengths of curves such as
the ellipse and the lemniscate,

(x2 + y2)2 = x2 − y2.

define

z =
sin θ

2

sin θ0
2

and
k = sin

θ0

2
.

Then, Equation (4) becomes

T =
4
ω

∫ 1

0

dz√
(1− z2)(1− k2z2)

. (5)

This is done by noting that dz = 1
2k cos θ

2 dθ = 1
2k (1− k2z2)1/2 dθ and

that sin2 θ0
2 − sin2 θ

2 = k2(1− z2). The integral in this result is called The complete elliptic integral of the first
kind.the complete elliptic integral of the first kind.
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Elliptic Integrals of First and Second Kind

There are several elliptic integrals. They are defined as

F(φ, k) =
∫ φ

0

dθ√
1− k2 sin2 θ

(6)

=
∫ sin φ

0

dt√
(1− t2)(1− k2t2)

(7)

K(k) =
∫ π/2

0

dθ√
1− k2 sin2 θ

(8)

=
∫ 1

0

dt√
(1− t2)(1− k2t2)

(9)

E(φ, k) =
∫ φ

0

√
1− k2 sin2 θ dθ (10)

=
∫ sin φ

0

√
1− k2t2
√

1− t2
dt (11)

E(k) =
∫ π/2

0

√
1− k2 sin2 θ dθ (12)

(13)

=
∫ 1

0

√
1− k2t2
√

1− t2
dt (14)

Elliptic Functions

Elliptic functions result from the inversion of elliptic integrals. Con-
sider

u(sin φ, k) = F(φ, k) =
∫ φ

0

dθ√
1− k2 sin2 θ

. (15)

=
∫ sin φ

0

dt√
(1− t2)(1− k2t2)

. (16)

Note:F(φ, 0) = φ and F(φ, 1) = ln(sec φ + tan φ). In these cases F is
obviously monotone increasing and thus there must be an inverse.

The inverse of F(u, k) is sn (u, k) = sin φ = sin amu, where

am(u, k) = φ = F−1(u, k)

am is called the amplitude. Note that sn (u, 0) = sin u and sn (u, 1) =
tanh u.

Similarly, we have

u =
∫ cn (u,k)

0

dt√
(1− t2)(k′2 + k2t2)

. (17)

u =
∫ dn (u,k)

0

dt√
(1− t2)(t2 − k′2)

. (18)
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Figure 2: Plots of the Jacobi elliptic
functions for m = 0.75.

The Jacobi elliptic functions for m = 0.75 are shown in Figure 2.
We note that these functions are periodic. The Jacobi elliptic func-
tions are related by

sin φ = sn (u, k) (19)

cos φ = sn (u, k) (20)√
1− k2 sin2 φ = dn (u, k) (21)

(22)

Furthermore, we have the identities

sn 2u + cn 2u = 1, k2 sn 2u + dn 2u = 1.

Derivatives Derivatives of the Jacobi elliptic functions are easily
found. First, we note that

d( sn u)
du

=
d( sn u)

dφ

dφ

du
= cn u

√
1− k2 sin2 φ = cn u dn u,

where
du
dφ

=
1√

1− k2 sin2 φ

results from integrating F(φ, k).

Similarly, we have
d

du
cn u = − sn u dn u, and

d
du

dn u = −k2 sn u cn u.
Differential Equations
Let y = sn u. Using

d( sn u)
du

= cn u dn u,

we have
dy
du

=
√

1− y2
√

1− k2y2,

or (
dy
du

)2
= (1− y2)(1− k2y2).
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Differentiating with respect to u again, we have the nonlinear second
order differential equation

y′′ = −(1 + k2)y + 2k2y3.

We note that this differential equation is amenable to solution
using Simulink. Such a model is shown in Figure 3.
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Figure 3: Simulink model for solving
y′′ = −(1 + k2)y + 2k2y3.

Periodicity
Consider

F(φ + 2π, k) =
∫ φ+2π

0

dθ√
1− k2 sin2 θ

.

=
∫ φ

0

dθ√
1− k2 sin2 θ

+
∫ φ+2π

φ

dθ√
1− k2 sin2 θ

= F(φ, k) +
∫ 2π

0

dθ√
1− k2 sin2 θ

= F(φ, k) + 4K(k). (23)

Since F(φ + 2π, k) = u + 4K, we have

sn (u+ 4K) = sin(am(u+ 4K)) = sin(am(u)+ 2π) = sin am(u) = sn u.

In general, we have

sn (u + 2K, k) = − sn (u, k) (24)

cn (u + 2K, k) = − cn (u, k) (25)

dn (u + 2K, k) = dn (u, k). (26)

The plots of sn (u), cn (u), and dn(u), are shown in Figures 4-6.
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Figure 4: Plots of sn (u, k) for m =
0, 0.25, 0.50, 0.75, 1.00.
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Figure 5: Plots of cn (u, k) for m =
0, 0.25, 0.50, 0.75, 1.00.

Complex Arguments

Values of the Jacobi elliptic functions for complex arguments can be
found using Jacobi’s imaginary transformations,

sn (iu, k) = i sc (u, k′) (27)

cn (iu, k) = nc (u, k′) (28)

dn (iu, k) = dc (u, k′). (29)

u
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Figure 6: Plots of dn (u, k) for m =
0, 0.25, 0.50, 0.75, 1.00.
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These results are found by rewriting the elliptic integral. We show
this for the first result by considering u = F(φ, k) in the form

F(φ, k) =
∫ φ

0

dθ√
1− k2 sin2 θ

.

We introduce the transformation

sin θ =
2t

1 + t2 ,

cos θ =

√
1−

(
2t

1 + t2

)2

=
1− t2

1 + t2 . (30)

This gives

cos θ dθ =
2(1 + t2)− 4t2

(1 + t2)2 dt =
2(1− t2)

(1 + t2)2 dt,

or dθ = 2
1+t2 dt

Applying this variable substitution to the elliptic integral, we have

u =
∫ φ

0

dθ√
1− k2 sin2 θ

= 2
∫ s

0

dt

(1 + t2)

√
1− k2

(
2t

1+t2

)2

= 2
∫ s

0

dt√
(1 + t2)2 − 4k2t2

= 2
∫ s

0

dt√
1 + 2(1− 2k2)t2 + t4

. (31)

Inserting t = ix, and noting that the integrand is an even function
of x, we obtain

u = i
∫ −is

0

dx√
1− 2(1− 2k2)x2 + x4

.

= −i
∫ is

0

dx√
1− 2(1− 2k2)x2 + x4

. (32)

Introducing k2 = 1− k′2, leads to

u = −i
∫ is

0

dx√
1− 2(1− 2(1− k′2))x2 + x4

= −i
∫ is

0

dx√
1− 2(−1 + k′2)x2 + x4

iu =
∫ is

0

dx√
1 + 2(1− k′2)x2 + x4

. (33)
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Therefore, we have Equation (33) is the same as Equation (31) and
the inverse function is sn (iu, k′).

Using the transformation, we find that sn (iu, k′) is pure imagi-
nary:

sn (iu, k′) =
2is

1− s2

= i
sin φ

cos φ

= i
sn (u, k)
cn (u, k)

= i sc (u, k). (34)

We can exchange k with k′ to obtain the final result sn (iu, k) =

i sc (u, k′).
There is a problem when cn (u, k′) = 0. Noting that

sn (0, k) = 0, cn (0, k) = 1, dn (0, k) = 1,

and
sn (K, k) = 1, cn (K, k) = 0, dn (K, k) = k′,

and that cn (u, k) has period 4K, then cn (u, k′) = 0 for u = (2n +

1)K′. Thus, sn (iu, k) has imaginary period of 2iK′.
Plots of the Jacobi elliptic functions in the complex plane using

domain coloring for k = 0.7 are shown in Figures 7-9. In this case
we have K(.7) = 1.8457 and K′(.7) = K(

√
1− .72) = 1.8626. This

gives the periods for sn(u) as 7.3828 and 3.7253i, which can be seen
in Figure 7.
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Figure 7: Domain coloring plot of
sn (u, k) for u = x + iy and k = 0.7.
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Figure 8: Domain coloring plot of
cn (u, k) for u = x + iy and k = 0.7.
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Figure 9: Domain coloring plot of
dn (u, k) for u = x + iy and k = 0.7.
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Addition Formulae Letting si = sn (ui), for i = 1, 2, etc., we have

sn (u + v) =
sn u cn v dn v + sn v cn u dn u

1− k2 sn 2x sn 2y
. (35)

cn (u + v) =
cn u cn v− sn u sn v dn u dn v

1− k2 sn 2x sn 2y
. (36)

dn (u + v) =
dn u dn v− k2 sn u sn v cn u cn v

1− k2 sn 2x sn 2y
. (37)

From these formulae and the Jacobi imaginary transformation, one
can derive formula for complex arguments.

Arithmetic-Geometric Mean

The Arithmetic-Geometric Mean (AGM) iteration of Gauss is given
by a two-term recursion

an+1 =
an + bn

2
,

bn+1 =
√

anbn. (38)

These sequences converge to a common limit,

lim
n→∞

an = lim
n→∞

bn = M(a0, b0).

In 1799 Gauss saw that

1
M(1,

√
2)
≈ 2

π

∫ 1

0

dt√
1− t2

up to eleven decimal places. This is an example of

1
M(1, x)

=
2
π

∫ π/2

0

dθ√
1− (1− x2) sin2 θ

.

Letting x = sin α, we can write

K(cos α) =
π

2
1

M(1, sin α)
.
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