Course Schedule 

                           

Back

Tentative (Rough) Schedule

Date   Day  Chapter

Topics

Jan   9 M   Ellipses to Riemann Surfaces
  11 W   Cubics, Cardano to Euler and de Moivre
  13 F   Complex and Extended Complex Planes
  16 M   Holiday
  18 W   Riemann Sphere. Stereographic Projection
  20 F   Differentiation
  23 M   Entire functions and Mappings
  25 W   Meromorphic functions
  27 F   Fractional Linear Transformations/Mobius Transformations
  30 M   Integration in Complex Plane/Cauchy's Theorem
Feb   1 W   Cauchy Integral Formula
    3 F   Generalized Cauchy Formula
    6 M   Power Series/Analytic Functions
    8 W II.1 Laurent Series
  10 F II.2 Calculus of Residues/Rouche's Thm
  13 M II.4 Mapping UHP to Rectangle
  15 W II.4 Schwarz-Christoffel Theorem
  17 F II.5 Harmonic Functions - Poisson's Integral
  20 M II.5 Dirichlet Problem
  22 W II.6 Fluid Flow
  24 F II.6 Kutta-Joukowski Theorem
  27 M II.10 Infinite Products/Gamma Function
Mar   1 W II.10 Gamma Function & Watson's Lemma/Laplace's Method
  3 F   Midterm

       Spring Vacation - Mar 4-12

  13 M III.1 Conformal Mapping
  15 W III.2 Riemann Mapping Theorem
  17 F   Analysis on a Torus - Prelude to Elliptic and Theta Functions
  20 M   Modular Transformation - Connect Lattices to Riemann Surfaces
  22 W III.4 Periodic Meromorphic Functions
  24 F III.4 Periodic Entire Functions
  26 M III.5 Weierstrass Elliptic Functions
  29 W III.5 Elliptic Integrals
  31 F III.5 Spherical Pendulum
Apr   3 M III.6 Jacobi Elliptic Functions
    5 W III.6 Jacobi Elliptic Functions - Applications
    7 F III.6 Theta Functions
  10 M III.7 Topology of Riemann Surfaces
  12 W III.7 Triangulation and Classification
  13 R   No Class
  14 F   No Class
  17 M III.8 Analytic Continuation
  19 W III.8 Analytic Continuation
  21 F   Riemann Zeta Function
  24 M   Huritz Zeta Function
  26 W   Prime Number Theorem/The Riemann Hypothesis
Apr 28 W   Final 11:30-2:30

 

Top

E-Mail: Dr. Russell Herman Last Updated: February 10, 2017