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Consider the line element
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We want to find the geodesic equations and the Christoffel symbols.

1 Lagrangian Approach

Recall that for the line element ds* = g,z dz®dz® = —c? dr? we seek to extrem-
ize
1
dz® dxP
CTAB = / —Yap —v v dA
0 dX dA

Defining the Lagrangian
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the geodesic equations are found from the Euler-Lagrange Equations
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where v =0,1,2, 3.

For this problem the Lagrangian is given by
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and we let v =t, ¢, r.

We will write out the Euler-Lagrange equations for each v = ¢, ¢,r, cor-
responding to the time, angle, and radial equations, respectively. From the
geodesic equations in the form
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we can read off the Christoffel symbols.



Euler-Lagrange Equation for Time, ¢t. Using L% = %, we find
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Euler-Lagrange Equation for Angle, ¢.
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Euler-Lagrange Equation for the Radial variable, .
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The general geodesic equation in terms of the Christoffel symbols is
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The radial equation is obtained for z% = r,
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Comparing this to Equation (3), we have
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Getting the other Christoffel symbols is trickier because Equations (1) and

(2) both contain % and ZQT‘Q terms. So, we need to solve these coupled equations

for the desired terms. Noting from Equation (2) that
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Equation (1) can be rewritten as

d?t dt dr d’¢ do dr
2 2.2 2 2
_ Bl i >v_ e
[C wr ] dr? w 7noZT dr wr dr2 wr dr dr
dt dr de dr
= wir—Z o2
w 7noZT dr wrdT dr
do dr 2d2t dt dr
—w | —or o o 2
w 7da dr tor dr? + wrdT dr
d?t d?t
2 2.2 2.2
[C —wr ] ﬁ = —wr ﬁ
Therefore,
@
dr?
and
t

for all 8 and ~.
This leaves the ¢-equation as
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We can read off the Christoffel symbols as

2 Direct Computation of Christoffel Symbols

The Christoffel symbols can be computed directly from
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The metric coefficients are found from the line element,
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We can determine the Christoffel symbols by inserting different values for .



Time Equations For o = t, we have
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The last term is zero. Since gy and g are not zero, we have
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The metric coefficients are only functions of r, v = r or 8 = r. Noting that
grr = 1 and using symmetry, T', = T? 5, we take v = 7 to find
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Now, 8 =t or 8 = ¢. This gives
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We will solve these equations for the Christoffel symbols using the next
results for a = ¢.

Angle Equations For a = ¢, we have
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The last term is zero. Since the metric coefficients are only functions of r,
v =7 or B =r. For v =r we have
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Now, 8 =t or B = ¢. This gives the equations
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We will solve these equations for the Christoffel symbols later.

Radial Equations For a = r, we have
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We see that § = r, giving
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We still need to extract the Christoffel symbols from the equations
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The first and third equations give
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Multiply the second equation by w,
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The second and fourth equations give
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Multiply the second equation by w,
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Adding, we have —c°T = 0. Therefore,
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3 Summary

In summary, using both methods, we have the
this metric are given by

The geodesic equations in standard form were found as

nonzero Christoffel symbols for
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