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Water Waves - Before 1800

• 1687 Isaac Newton - 1st attempt at theory of waves.

• 1738 D. Bernoulli, fluid flow in pipes.

• 1744 d’Alembert published a companion volume to his first work,

the Traité de l’équilibre et du mouvement des fluides.

• 1757 Euler published 3 papers on hydrodynamics, E225: Principes

généraux de l’état d’équilibre des fluides., E226: Principes généraux

du mouvement des fluides, E227: Continuation des recherches sur la

théorie du mouvement des fluides.

• 1776 Laplace, mostly Theory of Tides.

• 1781 Lagrange (1786, 1788)

Mémoire sur la Théorie du mouvement des fluides

- linearized equations for small amplitude waves

- long waves in shallow water (λ≫ h).

- v =
√
gh, independent of wavelength.

- Used Lagrangian vs Eulerian coordinates.
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Euler Equations

• Continuity Equation

∂ρ

∂t
+∇ · (ρv) = 0.

• Momentum Equation

∂v

∂t
+ (v · ∇) v = −1

ρ
∇P − gk.

• For incompressible flow, ρ is

constant giving

∇ · v = 0.

• Irrotational flow,

∇× v = 0.

Leonhard Euler (1707-1783)

• Potential function,

v = ∇ϕ(x, t).

• Laplace’s Equation

∇2ϕ = 0. 4



Surface Waves

−h

z

x

λ

w = 0

z = η(x , t)

Plane surface wave with a flat bottom.
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Lagrange, Laplace and Water Waves

• Pierre-Simon Laplace (1749-1827)

made progress but was disregarded,

1776.

• Lagrange independently derived

linearized equations for small

amplitude waves, 1781, 1786, 1788.

• Determined wave speed, v −
√
gh, h is

liquid depth.

• Wave speed independent of wavelength

if λ≫ h. - Shallow water

approximation.

• Laplace posed the initial value problem.

Later taken up by Cauchy and Poisson.

• Small displacements governed by

“Laplace’s equation.”

Joseph-Louis Lagrange (1736-1813)
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Gerstner Waves - 1802

Gerstner’s solution is given by

X = a+
1

k
ekb sin k(a+ ct),

Y = b − 1

k
ekb cos k(a+ ct).(1)

Here, k is related to the wavelength

and c is the wave speed.

The surfaces of elevation are

trochoids and the limiting cusped

case is the free surface and it tends

to a cycloid.

The three types of trochoids are

parametrically given by

x = aϕ− b sinϕ, y = a− b cosϕ.

Frantǐsek Josef Gerstner (1756-1832)

As a wheel of radius a rolls without

slipping [ϕ = ωt, v = aω], the

curves are followed by a point at a

distance b from the center of the

wheel.
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Plots of prolate cycloid, cycloid, and curtate cycloid

Cycloid (a = b)

Prolate Cycloid (a < b)

Curtate Cycloid (a > b)

Plots of the points for fixed m = 10, b ≤ 0 at t = 0. It consists of

horizontal constant b curves and vertical constant a curves. The particle

paths consist of circles with centers at (a, b) and radii 1
k e

kb for b < 0.
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Gerstner Waves Cross Section

Plots of the points

[
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)]
at different times for fixed m = 10, b ≤ 0. The grid consists of horizontal

constant b curves and vertical constant a curves. 9
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The Great Wave of Translation - 1834

“I was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair of

horses, when the boat suddenly stopped—not so the mass of water in the channel which it had put

in motion; it accumulated round the prow of the vessel in a state of violent agitation, then

suddenly leaving it behind, rolled forward with great velocity, assuming the form of a large solitary

elevation, a rounded, smooth and well-defined heap of water, which continued its course along the

channel apparently without change of form or diminution of speed. I followed it on horseback, and

overtook it still rolling on at a rate of some eight or nine miles an hour [14 km/h], preserving its

original figure some thirty feet [9 m] long and a foot to a foot and a half [300-450 mm] in height.

Its height gradually diminished, and after a chase of one or two miles [2-3 km] I lost it in the

windings of the channel. Such, in the month of August 1834, was my first chance interview with

that singular and beautiful phenomenon which I have called the Wave of Translation.” - John

Scott Russell

Union Canal, Hermiston, Scotland
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John Scott Russell (1808-1882)

Engineer, Edinburgh

Committee on Waves, 1837, 1844

Used 30 ft tank

v2 = g(h + a)
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Re-enactment 7/12/95 - Union Canal

Named Scott Russell Aqueduct 12



Dispersion vs Nonlinearity

Dispersion causes waves to spread and flatten while nonlinearity cause waves to

be more compact and steepen.
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G. B. Airy and G. G. Stokes

Green, Kelland, Airy and Earnshaw published on water waves, 1840s.

George Green - 1838, “On the motion of waves in a variable canal of small depth and

width,” 1839, “Note on motion of waves in canals,” WKB analysis.

George Biddle Airy (1801-1892)

• 1826 Lucasian Chair, 2 yrs.

• 1835-1881, appointed Astronomer

Royal.

• Tides and Waves, 1841.

• Linear Water Waves.

Sir George Gabriel Stokes (1819-1903)

• Undergrad, Cambridge 1837.

• Coached by William Hopkins.

• 1841 Senior Wrangler, Smith Prize.

• 1849 Lucasian Chair, 54 yrs.

• Stokes’ Theorem, Smith Exam, 1854.
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Navier-Stokes Equation

Add friction -
∂v

∂t
+ (v · ∇) v = −1

ρ
∇P − gk+ ν∇2v.

• 1821 Sur les lois des mouvements des fluides, en ayant égard à

l’adhésion des molecules

• 1823 Sur Les Lois du Mouvement des Fluides (in print, 1827),

• Both read at L’Académie on March 18th, 1822.

• Augustin Cauchy, Siméon Poisson, and

Adhémar Barré de Saint-Venant

provided other approaches.

• G. G. Stokes, 1845, “On the theories

of the internal friction of fluids in

motion.”

• Viscosity of the air flowing around the

pendulum.- Very practical! Claude-Louis Navier (1785-1836)
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Stokes Waves

In 1847, Stokes used perturbation series to obtain approximate periodic

solutions to nonlinear wave motion. [See his paper here. Note that Stokes

describes J. S. Russell’s solitary waves as one motivation in this study.]

He considered waves of large enough amplitude that nonlinearity could be

taken into account. He did so by expanding solutions to third order in

ϵ = ka, the product of the amplitude and wave number. Stokes obtained

z = a

(
cos k(x − ct) +

1

2
ϵ cos 2k(x − ct) +

3

8
ϵ3 cos 3k(x − ct)

)
, (2)

where

c =

(
1 +

1

2
ϵ2
)√

g

k
.

We can plot these terms and see the effects on the shape of the surface

wave.
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Stokes’ Wave Corrections

(b)

(a)

Plots of the Stokes’ wave corrections in Equation (2). (a) Here are shown the

first (blue), second (black), and third (red) order terms. (b) The second and

third order terms are added to the first (blue) and the partial sums are shown

ending with the thin white curve showing some steeper slopes near the wave

crests. Eventually Stokes predicted the peaks with a steep crest of 120◦.
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Key Equations

The key equations used for incompressible, inviscid, one-dimensional

water waves can summarized as Laplace’s equation, a bottom boundary

condition and two free surface boundary conditions,

ϕxx + ϕzz = 0

ϕz = 0, z = −h,

ηt + ϕxηx = ϕz , z = η(x , t),

ϕt +
1

2

(
ϕ2x + ϕ2z

)
+ gz = 0, z = η(x , t). (3)

The velocity components are given by (u,w) = (ϕx , ϕz).
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General Perturbative Analysis

Now, carry out a perturbative analysis of the set of nonlinear equations.

This can lead to solutions for the surface waves or a partial differential

equation giving the evolution of the surface waves. [e.g., the KdV

Equation, NLS Equation, or higher dimensional nonlinear wave

equations].

For example, the Stokes expansion procedure starts by assuming

sinusoidal solutions in the form

η(x , t) =
∞∑
n=1

ϵnan cos nk(x − ct)

ϕ(x , z , t) =
∞∑
n=1

ϵnbn(z) sin nk(x − ct). (4)

Then, the expansion coefficients are obtained at various orders of the

small parameter ϵ.
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General Solution

Since ϕ(x , z , t) satisfies Laplace’s equation, b′′n (z) = n2k2bn(z). The

general solution is

bn(z) = An cosh nkz + Bn sinh nkz .

Now, apply the bottom condition, b′n(−h) = 0, to find that

bn(z) = An cosh nk(z + h).

So, now we have

ϕ(x , z , t) =
∞∑
n=1

ϵnAn cosh nk(z + h) sin nk(x − ct). (5)
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Apply Two Surface Boundary Conditions

Insert the series for η(x , t) and ϕ(x , z , t) and consider the contributions

at each order of ϵ.

At leading order, we need the linearized version of the last two equations

in system (3). Therefore, for z = η(x , t),

ηt ≈ ϕz ,

ϕt + gη ≈ 0, (6)

or to leading order

a1kc sin k(x − ct) ≈ A1k sinh kh sin k(x − ct),

A1kc cosh kh cos k(x − ct) ≈ ga1 cos k(x − ct). (7)

Thus, we have

a1c = A1 sinh kh, A1kc cosh kh = ga1.

So, A1 =
c

sinh kh
a1 and kc2 = g tanh kh.

Stokes went on to compute higher order corrections.
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Finding the Balance

Joseph Valentin Boussinesq

(1842-1929) and Lord Rayleigh (John

William Strutt, 1842-1919)

Diederik Johannes Korteweg

(1848-1941) and Gustav de Vries

(1866-1934)
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KdV Traveling Waves Solutions

KdV Equation: ut + 6uux + uxxx = 0.

Seek solutions of form u(x , t) = f (x − ct) = f (z). Then,

0 = −cf ′ + 6ff ′ + f ′′′

0 = [−cf + 3f 2 + f ′′]′

A = −cf + 3f 2 + f ′′

Af ′ = −cff ′ + 3f 2f ′ + f ′′f ′

Af + B = −c

2
f 2 + f 3 +

1

2
(f ′)2 (8)

So,
1

2

(
df

dz

)2

= B + Af +
c

2
f 2 − f 3

Set A = B = 0.
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Solitons and Cnoidal Wave Solutions

Solve (
df

dz

)2

= cf 2 − 2f 3.

for df
dz and separate variables:

dz =
df√

f 2(c − 2f )
.

Let f = c
2 sech

2 u and df = −c sech2 u tanh u du :

dz =
−c sech2 u tanh u du

c
2 sech

2 u
√
c − c sech2 u

= − 2√
c
du

z − z0 = − 2√
c
sech−2 2f

c
(9)

Then, u(x , t) = c
2 sech

2
√
c
2 (x − ct − z0). Let η =

√
c
2 , then

u(x , t) = 2η2 sech2 η(x − 4η2t − z0). (10)
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Cnoidal Waves

US Army bombers flying over near-periodic swell in shallow water, close to the

Panama coast (1933).

25



Two Dimensional Waves

Kadomtsev–Petviashvili Equation:

(ut + 6uux + uxxx)x + uyy = 0
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The KdV Resurgence - 1960s

KdV Equation: ut + αuux + βuxxx = 0.

Gardner, Greene, Kruskal, Miura - 1965

• Fermi, Pasta, Ulam (FPU) Problem - 1954.

• Birth of Electronic Computers

• Coined “soliton.”

• Started a revolution
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The Emergence of Solitons - MATLAB Reconstruction

Following the initial condition u(x , 0) = cosπx .
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A Two Soliton Solution

u(x , t) = 2(p2 − q2)
p2 csch2 θ + q2 sech2 χ

(p coth θ − q tanhχ)2

where θ = px − 4p3t + θ0, χ = qx − 4q3t + χ0.
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Frame Title
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Inverse Scattering Transform

Lax Pair: Lψ = λψ, ψt = Mψ.

Then, Lt = [L,M] is KdV, ut − 6uux + uxxx = 0, for

M = −4∂3x + 6u∂x + 3ux , and L = −∂2x + u

u(x , 0) Scattering Data

S(0), t = 0

Scattering Data

S(t), t > 0

u(x , t)

KdV Evolution

Direct Scattering

Inverse Scattering Transform

Time Evolution

ψ′′ − u(x , 0)ψ = λψ
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Other Nonlinear Evolution Equations

• Nonlinear Schrödinger Equation

iut + uxx + |u|2u = 0.

• sine-Gordon Equation

utt − uxx + sin u = 0.

• Extend IST beyond KdV Equation

• Zakharov-Shabat, 1979

• Ablowitz, Kaup, Newell, Segur, 1974

• Add perturbations, perturbed KdV

ut + 6uux + uxxx = ϵF (x , t, u, ux , ...)

Are solitons stable?
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Nonlinear Optics

• 1973 Hasegawa Tappert predicted optical solitons

and use in communications

• 1987, the first experimental observation of the

propagation in an optical fiber.

• 1988, Mollenauer and his team transmitted soliton

pulses over 4,000 kilometers.

• 1991, Bell Labs team transmitted solitons error

free at 2.5 gigabits over more than 14,000 km.

• 1998, Georges and his team demonstrated a data

transmission of 1 terabit per second

(1,000,000,000,000 units of info. per sec).

• 2001, practical use of solitons became a reality

when Algety Telecom deployed submarine

telecommunications equipment in Europe carrying

real traffic using Russell’s solitary wave.
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Peregrine Soliton

1983 – Peregrine predicted spatio-temporal evolution of an NLS soliton

20 years later – used as protypical example of rogue waves – in water and

in optics.
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Rogue Waves
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Draupner Wave – Jan 1, 1995

• Oil platform in the central North Sea

• Minor damage

• Read by a laser sensor.

• During wave heights of 12 m (39ft),

• Freak wave - max height of 25.6 m

(84ft)

• (peak elevation was 18.5 m (61ft)).

• Estimated – 1 in 200,000 wave (P.

Taylor).
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Mathematical Rogue Waves
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Summary

38


	Linear and Nonliner Waves
	Water Waves - Before 1800
	Euler's Fluid Equations and Surface Waves
	Great Wave of Translation:
	The Quest for a Theory
	The KdV Equation
	The Modern Era

