Nonlinear Dynamics – Challenge 2 Hints

Note that the first 7 problems are fairly general. After that the problems are more algebraic.

1. Just explain what happens to points mapped by S. In particular, you should also show that $S\begin{pmatrix} x \\ 1 \end{pmatrix} = S\begin{pmatrix} x \\ 0 \end{pmatrix}.$

$$
S\begin{pmatrix} 1 \\ y \end{pmatrix} = S\begin{pmatrix} 0 \\ y \end{pmatrix} \text{ and } S\begin{pmatrix} x \\ 1 \end{pmatrix} = S\begin{pmatrix} x \\ 0 \end{pmatrix}.
$$

- 2. This is difficult if you try to show everything algebraically.
	- a. Set up $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ $f\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ for integer entries. Compute $A\begin{pmatrix} x+n_1 \\ y+n_2 \end{pmatrix}$ 2 $A\begin{cases} x+n \\ y+n \end{cases}$ $(x+n_1)$ $\begin{pmatrix} x+n_1 \\ y+n_2 \end{pmatrix}$ and apply the mod function by subtracting off all additive integers.
	- b. Provide a geometric description of how points map under S^2 and A^2 .
	- c. Generalize your argument in part b.
- 3. Since $S_v = v$, then $Av = v + \begin{bmatrix} n_1 \\ n_2 \end{bmatrix}$ 2 $Av = v + \binom{n}{n}$ $f(v) = v + \binom{n_1}{n_2}$ for n_1 and n_2 integers. Writing this out, you have $\binom{1 + bv_2}{-} \binom{v_1 + n_1}{-}$ $v_1 + dv_2$) $v_2 + n_2$ $av_1 + bv_2$ $(v_1 + n)$ $cv_1 + dv_2 = \bigg(v_2 + n \bigg)$ $\left(av_1 + bv_2 \right) \left(v_1 + n_1 \right)$ $\begin{pmatrix} a v_1 + b v_2 \\ c v_1 + d v_2 \end{pmatrix} = \begin{pmatrix} v_1 + v_1 \\ v_2 + n_2 \end{pmatrix}$. Solve for v_1 and v_2 . This is possible since you are to assume

that $\det(A-I) \neq 0$.

- 4. A hint is given in the book. Since $Aⁿ$ is a matrix of integers, you can apply Problem 3 and Problem 2c.
- 5. A hint is given and the problem is done geometrically. The key is that a linear map will map a domain of the unit square (torus) into a new region whose area is $|\det A|$ times the area of the original domain.
- 6. You are told to use the result of problem 5 to $A-I$. Namely, We know a fixed point satisfies $Av = v$. Rewriting this as $(A - I)v = 0$, we have the problem set up with the matrix $A - I$ with integer entries and $v_0 = 0$. Thus, the number of solutions of $(A - I)v = 0$ is $|\det(A - I)|$. The result follows simply from this.
- 7. Use Mathematical Induction on *n*. Prove that $A^1 = A$. Now assume it is true for *k-1*.

$$
A^{k-1} = \begin{pmatrix} F_{2k-2} & F_{2k-3} \\ F_{2k-3} & F_{2k-4} \end{pmatrix}
$$
. Show that $A^{k-1}A = A^k$. Then by induction one can conclude that the

form is true for all integers $n \ge 1$. For example, the 1-1 entry of the product is $2F_{2k-2} + F_{2k-3}$. This can be simplified using the Fibonacci rule with $n = 2k - 1$: $F_{2k-1} = F_{2k-2} + F_{2k-3}$. Then

 $F_{2k-3} = F_{2k-1} - F_{2k-2}$. Inserting into the 1-1 expression and using the Fibonacci rule for $n = 2k$, one gets the first part of the result.

- 8. This is a straight forward computation for fixed points and period two orbits as applied to this 2D cat map.
- 9. This is just a computation of a determinant.
- 10. Prove either by induction or manipulating the Fibonacci rule.