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Abstract

In these notes we present a simple introduction to the first conse-
quences of special relativity (simultaneity, time dilation, and length
contraction) as depicted using Lorentz transformations and the su-
perimposed Minkowski diagrams for two observers.
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Figure 1: Inertial systems S and S′.Lorentz Transformations

In this document we will consider the use of superimposed Minkowski
diagrams displaying Lorentz boosts. We will first refer to Figure
1. There are two inertial reference frames, S and S′. The space-
time coordinates in S are given by (x, ct). Those in S′ are given by
(x′, ct′). They are connected through a Lorentz transformation. [See
the derivations in the appendix.]

The Lorentz transformation in 1+1 dimensional spacetime is Lorentz transformation. Also, known as
a boost.

x = γ(x′ + vt′) = γ(x′ + βct′), (1)

ct = cγ(t′ +
vx′

c2 ) = γ(ct′ + βx′). (2)

and the inverse transformation is given by Here γ = 1√
1− v2

c2

= 1√
1−β2

is the

Lorentz factor and β = v
c is the dimen-

sionless velocity.
x′ = γ(x− vt) = γ(x− βct), (3)

ct′ = cγ(t− vx
c2 ) = γ(ct− βx). (4)

We can put these into matrix form. First we write Equations (1)-(2)
as Note that we have suppressed the

transformations y = y′ and z = z′ for
this discussion.

(
x
ct

)
=

(
γ γβ

γβ γ

)(
x′

ct′

)

=

(
cosh χ sinh χ

sinh χ cosh χ

)(
x′

ct′

)
.

Here we have written β = tanh χ, and γ = (1− β2)−1/2 = cosh χ, in
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terms of the rapidity, χ. The inverse transformation is given by(
x′

ct′

)
=

(
cosh χ sinh χ

sinh χ cosh χ

)−1(
x
ct

)

=

(
cosh χ − sinh χ

− sinh χ cosh χ

)(
x
ct

)

≡ Λ(χ)

(
x
ct

)
. (5)

In this form we can show that the composition of Lorentz transfor-
mations is a Lorentz transformation. Namely, we use matrix multipli-
cation to show Λ(χ1)Λ(χ2) = Λ(χ1 + χ2) :(

cosh χ1 − sinh χ1

− sinh χ1 cosh χ1

)(
cosh χ2 − sinh χ2

− sinh χ2 cosh χ2

)
=

(
cosh(χ1 + χ2) − sinh(χ1 + χ2)

− sinh(χ1 + χ2) cosh(χ1 + χ2)

)
.

Furthermore, we can derive the formula for the Addition of Veloci-
ties:

tanh χ =
tanh χ1 + tanh χ2

1 + tanh χ1 tanh χ2

V =
v1 + v2

1 + v1v2
c2

.

In Figure 2 a passenger on the train car tosses an object to a sec-
ond person.According to an observer on the ground, the train moves
at velocity v1 = v and the object moves at V = ux. However, accord-
ing the the person moving with the train, the object moves at velocity
v2 = u′x. So, we can write in a more standard form

ux =
dx
dt

=
u′x + v

1 + vu′x
c2

ux, u′x v
Figure 2: A passenger fires a bullet at
0.6c relative to a train moving at 0.8c.
How fast is the bullet moving relative to
the ground? It is not 1.4c!

A different derivation begins with the Lorentz transformations in
differential form,

dx = γ(dx′ + βcdt′) = γ(u′x + v)dt′,

dt = γ
(

dt′ + v
c2 dx′

)
= γ

(
1 +

vu′x
c2

)
dt′.

Then, dx
dt gives the same result.
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Spacetime Interval

In order to compare two events, we will need to compute spacetime
intervals. We note that “distances” in this spacetime, denoted by
(∆s)2, are not given by the Euclidean line element, (∆x)2 + (c∆t)2.
Instead, the spacetime increment is given by Note that we are using a (−,+,+,+)

signature for this discussion.
(∆s)2 = (∆x)2 − (c∆t)2. (6)

This can make some figures appear to have longer intervals between
events in spacetime than they actually are. (∆s)2 is invariant under Lorentz trans-

formations, i.e., (∆s)2 = (∆s′)2.It is important to note that under Lorentz transformations, (∆s)2 is
an invariant, i.e., (∆s)2 = (∆s′)2. For easy reference, we note the form
of the transformations on spatial and temporal increments:

∆x = γ(∆x′ + βc∆t′), (7)

c∆t = γ(c∆t′ + β∆x′), (8)

∆x′ = γ(∆x− βc∆t), (9)

c∆t′ = γ(c∆t− β∆x). (10)

We can analyze events using Equations (10) or by using graphical
means. This is discussed in the next sections as we investigate simul-
taneity, time dilation, and length contraction in special relativity.

Minkowski Diagrams

We would like to describe the connections between the measurements
of spatial and time intervals in the two frames of reference. (We
will use one-dimensional spatial coordinates (x) and scaled time
coordinates (ct). First, we describe how the two reference frames are
related. In Figure 3 we see that the unprimed axes are orthogonal
but the primed axes appear skewed. Let’s determined how they were
drawn.

Consider Figure 3. A given point can be described in reference
frame S with unprimed coordinates, (x, ct). As usual,we draw lines
parallel to the axes to determine the values of the coordinates. In the
same way, we can establish the primed coordinates. As seen in the
figure, we can pick out the coordinates, (x′, ct′).

First, we can locate the primed axes with respect to the unprimed
system using the equations for the Lorentz transformation. For the
x′-axis, we set x′ = 1 and ct′ = 0 in Equations (1-2). Then we obtain
x = γ and ct = βγ. Thus, ct = βx. So, the x′-axis has slope β = v/c
with respect to the unprimed axes.

The ct′ axes can be found in the same way. We set x′ = 0 and
ct′ = 1. Then, ct = γ and x = γβ = βct. Thus, the slope of the ct′-axis
is 1/β = c/v.
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Figure 3: Diagram for investigating
Lorentz boosts and changes in coordi-
nates in 1+1 dimensions.

In Figure 3 we show axes which have been drawn with β = 0.6.
Thus, γ = 1√

1−β2
= 5

4 . Setting x = γ and ct = βγ, we can locate

the point (1, 0) in the primed system. This is shown on the figure.
Similarly, we can mark off unit “lengths” along the time axis. Just set
ct = γ and x = βγ to get started. For the given value of β = 0.6, we
just use multiples of γ = 1.25 to locate the integer markings on the
primed axes.

Simultaneity

The first consequence of Einstein’s theory of special relativity is si-
multaneity. In Figure 4 we show what two observers see when a
light is turned on inside the train car. On the left the observer in the
train sees two light rays leave the bulb, traveling at c. The two rays
simultaneously hit opposite sides of the train car. On the right side
we show what an outside observer at the train station sees. Again,
each light ray moves at speed c, but the train is moving as well. Each
ray travels the same distance from the starting point, denoted by the
dashed line. However, the left ray strikes the train wall first. There-
fore, this observe does not see the light rays simultaneously strike the
wall of the train car.

We can show that events simultaneous in system S will not be in
system S′ moving at speed v with respect to S using our Minkowski
diagram. We first locate two simultaneous events in S, A and B, as
shown in Figure 5. The horizontal dashed line indicates the common
time in the S frame at which these two events take place. In order to
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Figure 4: Comparing what different
observers see when a light is turned on
inside a moving train.

determine the times recorded in the S′ frame, we draw dashed lines
through the events and parallel to the x′-axis. These lines intersect
the ct′-axis at points C and D. It is obvious that an observer at rest
with respect to the S′ frame does not see events A and B as occurring
at the same time.

Figure 5: Diagram exhibiting simultane-
ous events.

Example This can be verified numerically using the Lorentz trans-
formations. Let β = 0.6. From Figure 5 we have that ∆t = 0 for two
simultaneous events in frame S. Let’s say that event A occurs at po-
sition x1 = 2.0 m, event B occurs at position 4.0 m, and they occur at
ct1 = ct2 = 3.0cmin. (Note that a cmin = one c×(one minute) is a unit
of length!) Then from Equations 3-4 we have

x′1 = γ(x1 − βct1) =
5
4
(2.0− 0.6(3.0)) = 0.25 m,

x′2 = γ(x2 − βct2) =
5
4
(4.0− 0.6(3.0)) = 2.75 m,

ct′1 = γ(ct1 − βx1) =
5
4
(3.0− 0.6(2.0)) = 2.25 cmin,

ct′2 = γ(ct2 − βx2) =
5
4
(3.0− 0.6(4.0)) = 0.75 cmin,
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Time Dilation

Next we take up time dilation. In order to measure time we need
a simple clock with no moving parts, especially in the direction of
motion of the clock. We introduce a time clock which consists of an
enclosed contained in which a light ray moves perpendicular to the
clock’s velocity. At the top and bottom of the clock are two mirrors
spaced a distance D apart as shown in Figure 6. In a frame at rest
with the clock a light ray is seen simply to move from the lower
mirror to the top mirror, reflect and return to the first mirror. This
takes time ∆t0 = 2D/c. This gives the time for an observer at rest
with respect to the clock. Note that we used a subscript to denote the
proper time.

Figure 6: A light clock consists of two
mirrors. In a frame at rest with the
clock a light ray is seen simply to move
from the lower mirror to the top mirror,
reflect and return to the first mirror.
This takes time ∆t0 = 2D/c.

Now, consider that this observer is moving at speed v with the
clock with respect to a stationary observer. What the stationary ob-
server sees is shown in Figure 7. As the light ray leaves mirror one to
mirror two and back, the clock moves forward. The second observers
sees a triangular path traced as shown in the figure.

Figure 7: Depiction of moving light
clock from the point of view of a
stationary observer watching the light
clock speed past. The light ray is seen
to traverse a bent path.

We can relate the times measured by our two observers by refer-
ring to Figure 8. Let the time measured by the stationary observer be
∆t for the round trip of the light ray as it travels from mirror one to
two and back. Thus, the time to travel just between the two mirrors
is ∆t/2. The light ray travels at speed c and thus over distance c∆t/2
according to the second observer.

In the same time, the clock (and first observer) move forward a
distance of v∆t/2. Using the Pythagorean Theorem, we have

D2 +

(
v∆t

2

)2
=

(
c∆t
2

)2
.
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Figure 8: Diagram used for determining
time dilation.

Note that in the rest frame of the clock (observer one) we have D =
c∆t0

2 . Thus, (
c∆t0

2

)2
+

(
v∆t

2

)2
=

(
c∆t
2

)2
.

Solving for ∆t, we find the time dilation equation

∆t = γ∆t0, γ =
1√

1− v2

c2

. (11)

In this problem ∆t0 is the time measured by the moving clock and
∆t is the time measured by the stationary observer. Since γ ≥ 1, this
indicates that moving clocks tick slower.

Figure 9: Diagram for showing time
dilation for events located at a fixed
point in frame S.

Now we want to show that the measurement of time intervals in
the S frame are not the same as those in the S′ frame using Minkowski
diagrams. In Figure 9 we mark two events, A and B, located at the
same point in space but different points in time, in the S frame. The
horizontal (with respect to the x-axis) dashed lines mark off the times
along the ct-axis. Drawing lines parallel to the x′-axis shows intersec-
tions with the ct′-axis. The respective time intervals are marked as
c∆t and c∆t′, respectively. How are these time intervals related?

We can use the Lorentz transformations to find this out. Note that
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∆x = 0. Using c∆t′ = γ(c∆t− β∆x), we have

∆t′ = γ∆t.

Notice that events A and B are on the world line of a particle at rest
on the dashed line connecting these events. Therefore, ∆t measure
the proper time. Thus, we have that the proper time in S is less than
the time measured in S′.

This is not the Minkowski diagram that one would use to describe
the moving light clock earlier in the section. The diagram we would
need is in Figure 10. In this case the events A and B correspond to
when the light ray leaves mirror one (A) and returns to mirror 2 (B).
In frame S′ this occurs at a fixed position, so ∆x′ = 0. Using c∆t =

γ(c∆t′ + β∆x′, ) we recover the time dilation equation ∆t = γ∆t′,
where ∆t′ is the proper time in this example. This is the same result
as in Equation 11.

Figure 10: Diagram for showing time
dilation for events located at a fixed
point in frame S′.

As a further note, we can derive this result using the invariance
relation

(∆s)2 = −(c∆t)2 + (∆x)2 = −(c∆t′)2 + (∆x′)2.

Setting ∆x′ = 0 we have

(c∆t)2 − (∆x)2 = (c∆t′)2.

Notice that the sides of the triangle in Figure 10 do not satisfy the
Pythagorean relation from Euclidean geometry!

We would like to relate the time increments. So, we have to elim-
inate (∆x). Recall that the slope of the hypotenuse on the triangle
is

c∆t
∆x

=
1
β

.



minkowski diagrams and lorentz transformations 9

Thus, ∆x = βc∆t. This yields

(c∆t)2 − (∆x)2 = (c∆t′)2

(c∆t)2 − (βc∆t)2 = (c∆t′)2

(1− β2)(c∆t)2 = (c∆t′)2. (12)

Therefore, we once again obtain ∆t = γ∆t′.

Length Contraction

Finally, we want to look at the idea of length contraction. This is
depicted in Figure 11. We begin with a rod (or, measuring stick)
whose length is L0 as measured by an observer in the rest frame
of the rod, which will be S′. We now need to determine how one
measures the rod when the rod is moving at speed v past a second
observer.

Figure 11: Diagram for determining
length contraction for a moving meter
stick.

As the rod moves, we have a hard time lining up a meter stick next
to the rod to make any measurements. Instead, we watch as the rod
passes a fixed point and record the time interval from the time the
first end passes the point to the time the back end does. The time
obtained is

∆t =
L
v

,

where L is the length of the moving rod as recorded by the stationary
observer. The observer in the rest frame of the rod would record a
time of

∆t′ =
L0

v
.

However, we can use time dilation to relate the times. The time mea-
sured by the stationary observer is measured by focussing on a fixed
point in space. So, ∆t is the proper time in system S. It is shorter
than that measured in S′. Thus,

∆t′ = γ∆t.
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Note that the time measured in frame S′ cannot be a proper time
as the observer has to measure two different times in two different
locations, as we will see using the Minkowski diagrams.

Continuing with the computation, we have so far ∆t′ = γ∆t,
∆t = L

v , and ∆t′ = L0
v . Eliminating the time variables, we are left with

the length contraction equation:

L =
L0

γ
.

This indicates that the proper length is larger than the length mea-
sured in other inertial frames. So, moving rods contract.

We now return to Minkowski diagrams. We will determine which
system records shorter lengths in space in two cases. In Figure 13 the
rod is at rest in reference frame S and in Figure 12 the rod is at rest in
the S′ frame.

Figure 12: Diagram for determining
length contraction.

The earlier example is depicted by the diagram in Figure 12. The
observer in frame S′ initially places the rod along the x′-axis. As time
evolves, the world lines traced out by the ends of the rod trace out
the two parallel black solid lines shown. During the time interval
∆t′ the observer measures the rod length as ∆x′ as indicated. The
observer at rest with respect to reference frame S measures the ends
of the rod at a fixed time and finds that the length of the moving rod
is ∆x. From the Lorentz transformations with ∆t = 0, we have

∆x′ = γ∆x.

This is the length contraction equation.
In a similar manner, a rod at rest with respect to frame S is de-

picted in Figure 13. An typical example would be the situation where
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Figure 13: Diagram for determining
length contraction.

one person would stand on a train platform and the second stands
in the moving train and makes a measurement of the length of the
platform. The platform is initially aligned with the x-axis. The world
lines for the ends of the platform are shown as two black parallel
lines. The observer on the train measures the length at a fixed time,
so ∆t′ = 0. The Lorentz transformation gives

∆x = γ∆x′.

Again, the apparently moving platform yields a shorter length ac-
cording to the observer on the train.

Notice that in both cases the Euclidean lengths of the ∆x′ sides of
each triangle appear longer than side ∆x between points A and B.
How can this be? Remember, these increments in spacetime are given
by the invariant ∆s in both systems. First consider the situation in
Figure 12. We have that (∆s)2 between A and B is given by

(∆x)2 = (∆x′)2 − (−c∆t′)2.

From the Lorentz transformations, setting ∆t = 0, we also have

c∆t′ = −βγ∆x.

So,

(∆x)2 = (∆x′)2 − (−c∆t′)2

= (∆x′)2 − (βγ∆x)2 (13)

Rearranging,

(∆x′)2 = (1 + β2γ2)(∆x)2 = γ2(∆x)2,



minkowski diagrams and lorentz transformations 12

where we have used

1 + β2γ2 = 1 +
β2

1− β2 =
1

1− β2 = γ2.

The final result is that ∆x′ = γ∆x. This indicates that ∆x′ > ∆x.
In Figure 13 the computation is simpler. We have

(∆x′)2 = (∆x)2 − (c∆t)2.

From the slope of the segment ∆x′ is given as

c∆t
∆x

= β.

So,
(∆x′)2 = (∆x)2 − (β∆x)2 = γ−2(∆x)2.

This leads to the relation ∆x = γ∆x′, showing ∆x > ∆x′ in Figure 13.

Summary

We have presented an introduction to some of the consequences of
special relativity (simultaneity, time dilation, and length contraction)
as depicted using Lorentz transformations and the superimposed
Minkowski diagrams for two observers. We gave simple derivations
of the time dilation and length contraction equations, derived them
from the Lorentz transformations, Minkowski diagrams and the 1+1

dimensional increment form of the Minkowski line element.
Denoting the proper time interval by ∆t0 and the proper length by

L0, the time dilation and length contraction equations can be written
as

∆t = γ∆t0, (14)

L =
L0

γ
, (15)

where γ = 1√
1−β2

, β = v/c.
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Appendix: Derivation of Lorentz Transformation

Derivation 1

We consider two observers, one moving at speed v relative to the
other. From the Galilean point of view, we have the transformations,

x′ = x− vt, t′ = t.

Then, velocity measurements would differ as expected

dx′

dt′
=

dx
dt
− v

but both would measure the same accelerations (therefore, forces).
The problem is that Maxwell’s equations are not invariant under a
Galilean transformation.

Let’s assume that the new transformation takes the form

x′ = a(x− vt),

t′ = bx + dt. (16)

From the S′ reference frame, S (at x = 0) moves with velocity −v. So,

x′ = −avt, t′ = dt.

Then,
dx′

dt′
= − av

d
.

Since this should be −v, we see that d = a.
If both observers are to obtain the same value for c, then x = ct

and x′ = ct′. Then, a little manipulations yields,

x′ = ct′,

a(x− vt) = c(bx + at)

a(ct− vt) = c(bct + at),

ac− av = bc2 + ac,

b = − v
c2 . (17)

So far, we have the transformation

x′ = a(x− vt),

t′ = a(t− v
c2 x). (18)

All that is unknown is a. We can determine a by considering the
inverse transformation. The inverse transformation should be of a
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simliar structure as these equations, but with primed and unprimed
coordinate interchanged and v replace with −v.

x = a(x′ + vt′),

t = a(t′ +
v
c2 x′). (19)

Then, inserting the transformations for x′ and t′, we have

x = a(x′ + vt′),

x = a
[

a(x− vt) + va(t− v
c2 x)

]
,

x = a2x
[

1− v2

c2

]
.

and

t = a(t′ +
v
v2 x′),

t = a
[

a(t− v
c2 x) +

v
c2 a(x− vt)

]
,

t = a2t
[

1− v2

c2

]
.

(20)

Therefore, in order to have the correct inverse transformation, a =

γ =
[
1− v2

c2

]−1/2
.

Derivation 2

Consider three clocks as shown in Figure 14. Let clock C0 be synchro-
nized with clocks C1 and C2 spaced the same distance from C0. Now,
send a pulse at t = 0 to clocks C1 and C2. The pulse travels a distance
of ct. Then, x = ±ct, or x2 − c2t2 = 0.

S

x
ct−ct

C0 C1C2

Figure 14: Three synchronized clocks
with a light pulse emitted at t = 0.

Next, consider a system S′ which travels at velocity v with respect
to S as shown in Figure 15 By the same reasoning, x′2 − c2t′2 = 0.
Then we can relate the spacetime intervals, ∆x2 − c2∆t2 = ∆x′2 −
c2∆t′2.

Consider C′0 at rest with respect to S′. Then, ∆x′ = 0. According to
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S

x, x′

S′

C0

ct
vt

v
C2, C′2C′0

Figure 15: System S′ which travels at
velocity v with respect to S.

S, C′0 is at x = vt. Therefore,

x2 − c2t2 = −c2t′2

(v2 − c2)t2 = −c2t′2

t = γt′

γ =
1√

1− v2

c2

.

A Galilean transformation takes the form x = x′ + vt′, t = t′. So,
we assume the Lorentz transformation takes the form

x = ax′ + bct′, t = γt′.

We seek to find a and b.
First, we let x′ = 0. Since x = vt, we have vt = bcγ−1t. So, b = βγ,

or β = v/c.
For x = 0, x′ = −vt, we have 0 = −avt′ + bct′, or a = γ. Thus,

x′ = γ
(

x + βct′
)

.

Noting t = x/c and t′ = x′/c, we obtain

ct = γ(ct′ + βx′).

Thus, we have obtained the Lorentz transformation.
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