## Spring 2016

Instructions: To receive credit for all answers, show all work clearly in the space provided. You may use graphing calculators. This is designed to be a 50 minute test.

1. Find the indicated limits. If the limit does not exist, tell why.

a. 
$$\lim_{x \to 5} \frac{x^2 - 25}{2x^2 - 10x}$$

b. 
$$\lim_{x \to 6} \frac{x^2 - 25}{2x^2 - 10x}$$

c. 
$$\lim_{x \to 0} \frac{x^2 - 25}{2x^2 - 10x}$$

d. 
$$\lim_{x \to -\infty} \frac{x^2 - 25}{2x^2 - 10x}$$

2. a. Suppose that for all real numbers x,  $70\sqrt{x} \le f(x) \le 25x + 49$ , Is f(x) continuous at 49/25? Why or why not?

b. Is the function f(x) in question 2a continuous at x = 2? Why or why not?

3. Using the precise  $(\delta, \varepsilon)$  definition of limits, prove that  $\lim_{x\to 2} (-3x+4) = -2$ 

4. Suppose f(x) and its derivative both have all real numbers as a domain and the graph of y = f(x) has a horizontal asymptote of y = 4.

a. What is 
$$\lim_{x \to +\infty} f(x)$$
?

b. What is 
$$\lim_{x \to +\infty} \frac{f(x+h) - f(x)}{h}$$
 if h is a fixed nonzero number?

5. Use the Intermediate Value Theorem to find an interval where there is a solution to the equation  $8.1 = 6x - x^2$  in the interval.

6. a. Use the definition of a derivative to find f'(x) where  $f(x) = 5x^2 + 3x$ .

b. Firnd the equation of the tangent line to the graph of y = f(x) at (2, 26)?

c. Find the instantaneous rate of change of y = f(x) with respect to x when x = -2.

- d. Find the average rate of change of y = f(x) with respect to x over the interval [-1, 1]?
  - 7. Find f'(3) if  $f(x) = \frac{1+2x}{2+x}$ .