5

Spring 2016

Instructions: To receive credit for all answers, show all work clearly in the space provided. You may use graphing calculators. This is designed to be a 50 minute test.

1. Find the indicated limits. If the limit does not exist, tell why.

| a. | $\lim_{x\to 5}$ | $x^2 - 25$            |
|----|-----------------|-----------------------|
|    |                 | $\overline{2x^2-10x}$ |

lin (X-X)(X+5) (3)

3 215) = 10 = 1

b. 
$$\lim_{x \to 6} \frac{x^2 - 25}{2x^2 - 10x}$$

b.  $\lim_{x \to 6} \frac{x^2 - 25}{2x^2 - 10x} - \frac{2^2 - 25}{2(2^2 - 10x)}$ 

c. 
$$\lim_{x \to 0} \frac{x^2 - 25}{2x^2 - 10x}$$

 $\int d \cdot \lim_{x \to -\infty} \frac{x^2 - 25}{2x^2 - 10x} = \frac{1}{2}$ 

2. a. Suppose that for all real numbers x,  $70\sqrt{x} \le f(x) \le 25x + 49$ , Is f(x) continuous at 49/25? Why or why

g4=701 g(49)=20(3)=14(7)=698

NIX) = 25 x+49 = 22 495) = 49 +49=18

98 = 5(43) = 98 · (149)=98

b. Is the function f(x) in question 2a continuous at x = 2? Why or why not?

2  $g(2) = 20\sqrt{2} \le f(x) \le 2560 + 49 = 99$ 2  $70\sqrt{2} \ne 99 \implies we cannot obtaining <math>f(2)$ 1: There is insufficient evidence to conclude fis cost. of 2. 3. Using the precise  $(\delta, \varepsilon)$  definition of limits, prove that  $\lim_{x\to 2} (-3x+4) = -2$ 

Juin e 70 chome &= \frac{3}{3} 2

|-3x + 4 + 60 mm | < 6

| x = 2 | |-3x + 4 + 60 mm | < 6

| x = 2 | |-3x + 4 + 60 mm | < 6

| 2x = 6 | < 6

| -3x + 6 | < 7

163x+47-62)/xe.1

4. Suppose f(x) and its derivative both have all real numbers as a domain and the graph of y = f(x) has a horizontal asymptote of y = 4.

10

a. What is  $\lim_{x \to +\infty} f(x)$ ?

& Hecause of the how joilal compressed in y=4

b. What is  $\lim_{x \to +\infty} \frac{f(x+h) - f(x)}{h}$  if h is a fixed nonzero number? lin flyth - flx = 4-4 = 0 = 0 x=+10

5. Use the Intermediate Value Theorem to find an interval where there is a solution to the equation  $8.1 = 6x - x^2$  in the interval.

2 flx) = lex-x2 -8.1

2 410/2-81

20 is between -8.14.9

2: "} Ze(93) sothat

f(Z) = 0.

a. Use the definition of a derivative to find f'(x) where  $f(x) = 5x^2 + 3x$ .

$$f'(x) = \lim_{h \to 0} \frac{5(x+h)^2 + 3(x+h) - (5x^2 + 3x)}{h} = \lim_{h \to 0} \frac{5(x+h)^2 + 3(x+h) - (5x^2 + 3x)}{h} = \lim_{h \to 0} \frac{5(2x+h) + 3}{h} = \frac{5(2x) + 3}{h} = \frac{5(2x) + 3}{h}$$

b. Firnd the equation of the tangent line to the graph of y = f(x) at (2, 26)?



c. Find the instantaneous rate of change of y = f(x) with respect to x when x = -2.

4 
$$f'(-2) = 10(-2) + 3 = -20+3 = -17$$

d. Find the average rate of change of y = f(x) with respect to x over the interval [-1, 1]?

1. Find the average rate of change of 
$$y = f(x)$$
 with respect to x over the interval  $[-1, 1]$ ?

2.  $\frac{f(1) - f(-1)}{1 - -1} = \frac{5 + 3 - (5 - 3)}{2} = \frac{8 - 2}{2} = 4 - 1 = \frac{33}{2}$ 

7. Find f'(3) if  $f(x) = \frac{1+2x}{2+x}$ .  $\lim_{h \to 0} \frac{1+2(x+h)}{2+x+h} = \frac{1+2x}{2+x}$ 

$$= \lim_{N \to 0} \frac{(1+2x)(2+x)}{N(2+x)(2+x)} + 2h(2+x) - (1+2x)(2x) - h(1+2x)$$

$$= \lim_{N \to 0} \frac{(1+2x)(2+x)}{N(2+x)(2+x)} + 2h(2+x) - (1+2x)(2x) - h(1+2x)$$

$$= \lim_{N \to 0} \frac{2(2+x) - (1+2x)(2+x)}{(2+x)^2} + \frac{4+2x-1-2x}{(2+x)^2} = \frac{3}{(2+x)^2}, 0$$

$$=\lim_{N\to 0}\frac{2(2+x)-(1+2x)}{(2+x)^2}\frac{4+2x-1-2x}{(2+x)^2}=\frac{3}{(2+x)^2}$$