For complete credit, show all work.

In problems 1-4, calculate the limits.

3
1.
$$\lim_{x \to 5} \frac{x^2 + 2x - 35}{x - 5} = \lim_{x \to 5} \frac{(x+7)(x-5)}{x-5} = \lim_{x \to 5} \frac{(x+7)(x$$

2.
$$\lim_{x \to 2} \frac{8x^2 + 8x}{x + 2} = \lim_{x \to 2} \frac{8(2^2 + 12)}{2 + 2} = \frac{8(2^2 + 12)}{2 + 2} = 2(6) = 12$$

$$\frac{18}{3} \cdot \lim_{x \to 6} \frac{x^2 - 36}{|x - 6|} \quad \lim_{x \to 6} \frac{(x - 6)(x + 6)}{-(x - 6)} = -12; \quad \lim_{x \to 6} \frac{(x - 6)(x + 6$$

$$0) 4. \lim_{x \to +\infty} \frac{9+2x}{7x-6} = 2$$

$$1) 1 leading coeffaints$$

The height h of a small bird flying above the ground is measured by the following equation where h is in feet and x is seconds between 0 and 8:

 $h = 36 - (x-2)^2 - 34 - \chi^2 + 4\chi - 4 = 32 - \chi^2 + 4\chi$ Find the vertex of the parabola. What is the meaning of the x-intercept of the graph?

6. Find the horizontal and vertical asymptotes and any x and y intercepts for the following rational function. Draw the graph of the function.

$$f(x) = \frac{5x - 30}{2x + 10}$$
housontal
$$y = 5$$

$$y = 5$$

$$x = -5$$

$$5x-30=0$$

 $5x=30$
 $x=6$
 $(6,0)$ is the x -intercept
 $f(0)=\frac{-30}{5}=-3$
 $(0,-3)$ is the y -intercept

8. Find the equation of the tangent line to the curve $y = x^2 + 6x + 3$ at (2, 19).

f'(2) = 2(2) + 4 = 10 2 $y^{2} - 19 = 10(x - 20)$ y - 19 = 10x - 20

9. An object is thrown from the top of a building that is 525 feet tall. The distance the object is from the ground after t seconds is

 $s(t) = 561 - (4t - 5)^2$

a. Find the average velocity in the interval [1, 3] seconds.

12-12 (1-7)(14) = -318) = 24/A/second

b. Using limits, find the instantaneous velocity at t = 1 seconds.

10. Find a so that $f(x) = \begin{cases} 5x+7 & \text{if } x \le 2 \\ -2x+a & \text{if } x > 2 \end{cases}$ is continuous at x = 2.