
PHY101/201: Grimes Waves on a String Spring 2023

In the below derivation, the x-coordinate is aligned with the direction of the undisturbed string,
with y-coordinate the transverse direction aligned with the perturbation.

Overview: We seek a differential equation describing the vertical motion of the string, of
the form ÿ = F (y)/m with F being the net restoring force and m a measure of the string’s
mass. An important first approximation is that the disturbance is of small amplitude, which
is satisfied if the aspect ratio of the perturbation (wave) is small, i.e., A/L � 1 (Figure 1a).
We also assume stretching and horizontal motions are negligible, so the mass-per-unit-length is
constant. We will begin by choosing an arbitrary segment ∆x within the disturbed portion of
the string and determine the net forces and acceleration of that segment (Figure 1b). Then take
the limit ∆x→ 0 (e.g., , Figure 1c) to form a differential equation.
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Figure 1. (a) Initial disturbance having an amplitude A over a length L on
a taught string with initial tension T0. (b) Zoomed in segment ∆x illustrating

the forces (tension vectors, ~T ) acting on the ends of the segment. (c) Unit right-
triangle formed by joining the end-points of the segment in the limit ∆x→ 0.

Set-Up: Newton’s second law for the segment, in component form, is:

x̂ : −T (x) cos[θ(x)] + T (x+ ∆x) cos[θ(x+ ∆x] = 0, (1)

ŷ : −T (x) sin[θ(x)] + T (x+ ∆x) sin[θ(x+ ∆x] = µ
√

∆x2 + ∆y2 ÿ, (2)

where µ is the mass-per-unit-length of the string. Applying the definition of the derivative,
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to equations (1-2) gives,
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Evaluating the horizontal x̂ derivative in (3) gives,
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indicating that the tension varies in x depending on the string-slope (Figure 1c),
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and the string-curvature through ∂θ/∂x, i.e., differentiating both sides of (6) with respect to x
gives,
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Approximation: Before continuing to solve (4), it is useful to consider (4–7) under our
original assumption that A/L� 1. Provided the initial disturbance is smooth, the string-slope
is of a similar order in magnitude as the aspect ratio of the disturbance, i.e., ∂y/∂x ∼ O(A/L).
As such, we may simplify (4) and (7) by dropping the terms (∂y/∂x)2 ≪ 1, as they are very
small ! Thus, tension varies in x as, T ′ = T y′y′′, where the prime ()′ indicates derivatives w.r.t.
x. This also simplifies our analysis of the vertical ŷ component; differentiating and simplifying
(4) using (6-7) and Figure 1c,

T cos(θ)θ′ + T ′ sin(θ) = µÿ,
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gives,
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the 1D linear wave equation with phase speed v = ±
√
T/µ.

Solution: There are several methods for solving (8), e.g., change of variables, factorization
(both discovered by d’Alembert), and separable plane-wave solution–but, these are beyond the
scope of this blurb. The general form of the solution is,

y = A cos

(
2π

λA

(x− v t)
)

+ B sin

(
2π

λB

(x− v t)
)
, (9)

where constants A, B and λ(A,B) are determined by initial and/or boundary conditions.
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Figure 2. (a) Initial disturbance propagating to the right (black→ red), switch-
ing polarity at the end of the string and returning (red → blue) shown at time
intervals of ∆t ≈ L/(4v). (b) Segment vibrating with fundamental wavelength
λ0 = 2L0 shown at multiple phases of the oscillation. (c) Vibrations for mode
n = 2 with wavelength λ2 = 2L0/3, at similar phases to (b).

Discussion: If the disturbance in Figure 1a propagates to the right with phase speed v and
encounters a fixed endpoint, it will reverse direction and polarity (Figure 2a). The disturbance
is forced to change polarity by the fixed end of the string. If confined to finite string of length
L0 (e.g., fixed at x = 0 and x = L0 Figure 2b) it will “bounce” back and forth from end to end.
The fixed boundary conditions require the general solution (9) be modified. At time t = 0, we
require B = 0 and sin(2πL0/λA) = 0, which is accomplished by forcing the argument to equal
integer multiples of π, i.e., 2πL0/λA ∈ {π, 2π, 3π, ...}. Thus, only certain wavelengths called
modes are allowable, with the nth wavelength being λn = 2L0/(n + 1) (Figure 2b-c). We must
also require that the solution at x = 0 and x = L0 be zero for all time. This is achieved by the
superposition of two waves both with λ = λn & A = An propagating in opposite directions,
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(
2π

λn
(x− vt)

)
+ An sin

(
2π

λn
(x+ vt)

)
, (10)

where the first term propagates to the right (wave features at (x, t) were initially at (x− vt, 0))
and the second term propagates to the left. Using the trigonometric identity, sin(α ± β) =
sin(α) cos(β)± sin(β) cos(α), reduces the solution to,

yn(x, t) = 2An sin

(
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λn
x

)
cos(ωnt), (11)

with ωn = 2πv/λn, and thus satisfying the boundary conditions for all time. Each modal solution
(11) consists of a standing waveform with n zero amplitude interior nodes and n+ 1 large, time
varying amplitude antinodes. The antinodal oscillation frequency fn (units of cycles per second,
Hz) increases linearly with increasing mode number. Based on the kinematic relation between
speed, distance, and time, v = λnfn, the frequency increases as fn = (n + 1) v/L0. Therefore,
the lowest possible frequency of oscillation is the fundamental mode f0 and depends entirely on
v =

√
T/µ. Resonance occurs when external forcing has a frequency that matches fn, causing

the amplitude An to increase and become phase locked to the forcing.


