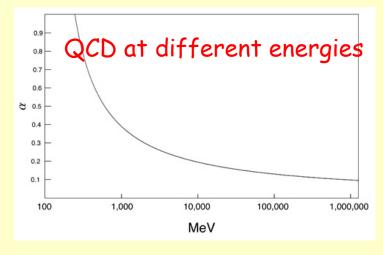
PrimEx Experiments and the Prospects of Rare n Decays at GlueX


Liping Gan
University of North Carolina Wilmington

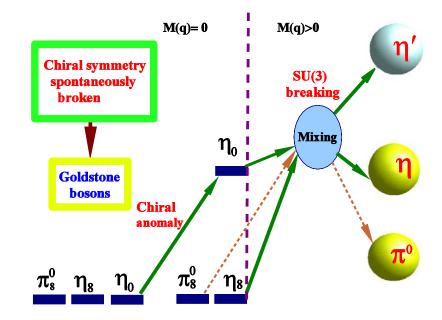
Outline

- > Challenges in Physics
- Precision tests of continuous symmetries of confinement QCD via the PrimEx experiments
- > Testing discrete symmetries and searching for new physics via the n rare decays
- Summary

Challenges in Physics

- > Confinement QCD
 - Lattice QCD
 - Chiral perturbation theory

- New physics beyond the Standard Model (SM)
 - New sources of symmetry violation
 - Dark matter
 - Dark energy


"As far as I see, all a priori statements in physics have their origin in symmetry". By H. Weyl

Continuous QCD Symmetries

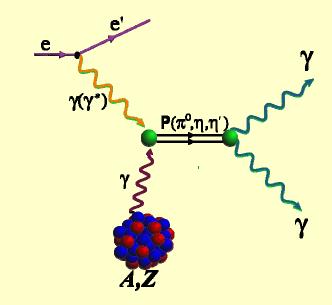
ullet QCD Lagrangian in Chiral limit (m_a $\rightarrow 0$) is invariant under:

$$SU_L(3) \times SU_R(3) \times U_A(1) \times U_B(1)$$

- Chiral symmetry SU_L(3)xSU_R(3) spontaneously broken:
 - \triangleright 8 Goldstone Bosons (π, K, η)
- \cup $\cup_A(1)$ is explicitly broken: (Chiral anomalies)
 - $ightharpoonup \Gamma(\pi^0 \rightarrow \gamma\gamma), \Gamma(\eta \rightarrow \gamma\gamma), \Gamma(\eta' \rightarrow \gamma\gamma)$
 - \triangleright Mass of η_0
 - Massive quarks, SU(3) broken:
 - GB are massive
 - \blacktriangleright Mixing of $\pi^0 \eta \eta'$

The π^0 , η , η' system provides a rich laboratory to study the symmetry structure of QCD at low energies.

Primakoff Program at Jlab 6 & 12 GeV


Precision measurements of electromagnetic properties of π^0 , η , η' via Primakoff effect.

a) Two-Photon Decay Widths:

- Γ(π⁰→γγ) @ 6 GeV
- 2) $\Gamma(\eta \rightarrow \gamma \gamma)$
- 3) $\Gamma(\eta' \rightarrow \gamma\gamma)$

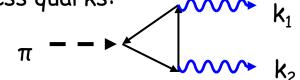
Input to Physics:

- precision tests of Chiral symmetry and anomalies
- determination of light quark mass ratio
- $> \eta \eta'$ mixing angle

b) Transition Form Factors at low

 Q^2 (0.001-0.5 GeV^2/c^2):

$$F(\gamma\gamma^* \rightarrow \pi^0)$$
, $F(\gamma\gamma^* \rightarrow \eta)$, $F(\gamma\gamma^* \rightarrow \eta')$


Input to Physics:

- $\succ \pi^0$, η and η' electromagnetic interaction radii
- is the η' an approximate Goldstone boson?

$\Gamma(\pi^0 \rightarrow \gamma \gamma)$ Experiments @ 6 GeV

- \square $\pi^0 \rightarrow \gamma \gamma$ decay proceeds primarily via the chiral anomaly in QCD.
- ☐ The chiral anomaly prediction is exact for massless quarks:

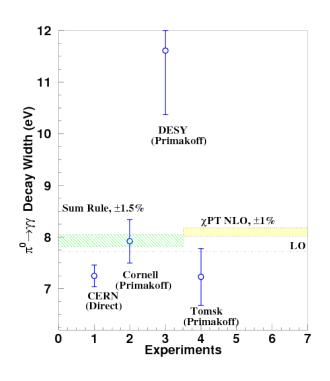
$$\Gamma(\pi^0 \to \gamma \gamma) = \frac{\alpha^2 N_c^2 m_\pi^3}{576\pi^3 F_\pi^2} = 7.725 \ eV$$

- \Box $\Gamma(\pi^0 \rightarrow \gamma\gamma)$ is one of the few quantities in confinement region that QCD can calculate precisely to higher orders!
 - Corrections to the chiral anomaly prediction:

$$\Box \Gamma(\pi^0 \rightarrow \gamma \gamma) = 8.10 \text{ eV} \pm 1.0\%$$

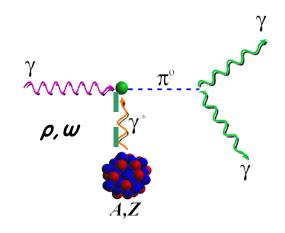
(J. Goity, et al. Phys. Rev. D66:076014, 2002)

$$\Box \Gamma(\pi^0 \rightarrow \gamma \gamma) = 8.06 \text{ eV} \pm 1.0\%$$

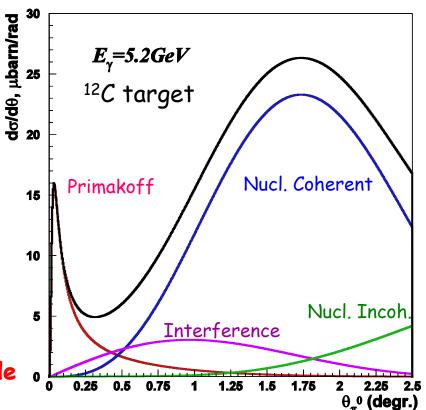

(B. Ananthanarayan et al. JHEP 05:052, 2002)

Calculations in NNLO SU(2) ChPT:

$$\Box \Gamma(\pi^0 \rightarrow \gamma \gamma) = 8.09 \text{eV} \pm 1.3\%$$


(K. Kampf et al. Phys. Rev. D79:076005, 2009)

- Calculations in QCD sum rule:
 - $\Gamma(\pi^0 \rightarrow \gamma \gamma) = 7.93 \text{ eV} \pm 1.5\%$ (B.L. Ioffe, et al. Phys. Lett. B647, p. 389, 2007)


 \square Precision measurements of $\Gamma(\pi^0 \rightarrow \gamma\gamma)$ at the percent level will provide a stringent test of a fundamental prediction of QCD.

Primakoff Method

$$\frac{d\sigma_{\text{Pr}}}{d\Omega} = \Gamma_{\gamma\gamma} \frac{8\alpha Z^2}{m_{\pi}^3} \frac{\beta^3 E^4}{Q^4} |F_{e.m.}(Q)|^2 \sin^2 \theta_{\pi}$$

Challenge: Extract the Primakoff amplitude

Requirement:

- **≻Photon flux**
- >Beam energy
- $>\pi^0$ production Angular resolution

Features of Primakoff cross section:

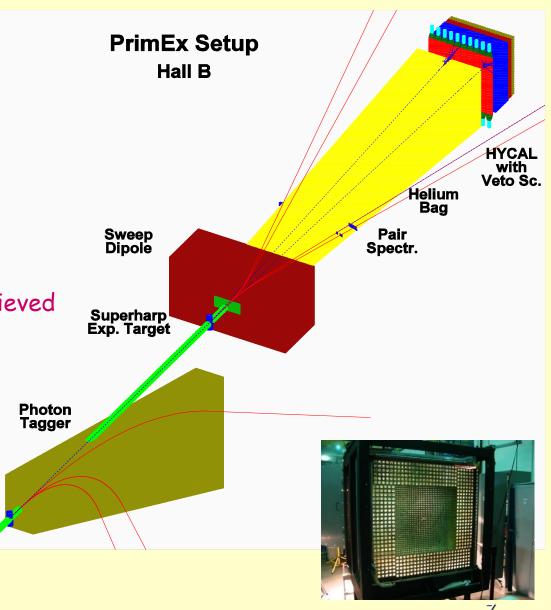
Peaked at very small forward angle:

$$\left< \theta_{
m Pr} \right>_{peak} \propto \frac{m^2}{2E^2}$$

·Beam energy sensitive:

$$\left\langle \frac{d\sigma_{
m Pr}}{d\Omega} \right\rangle_{
m near} \propto E^4, \ \int \! d\sigma_{
m Pr} \propto Z^2 \log(E)$$

·Coherent process


PrimEx Experimental Setup

JLab Hall B high resolution, high intensity photon tagging facility

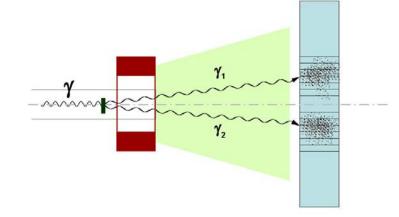
■ New pair spectrometer for photon flux control at high beam intensities

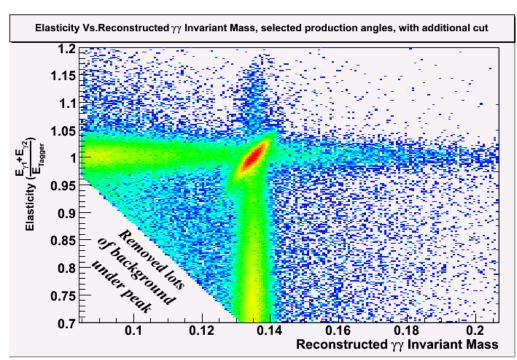
1% accuracy has been achieved

■ New high resolution hybrid multi-channel calorimeter (HyCal)

π^0 Event selection

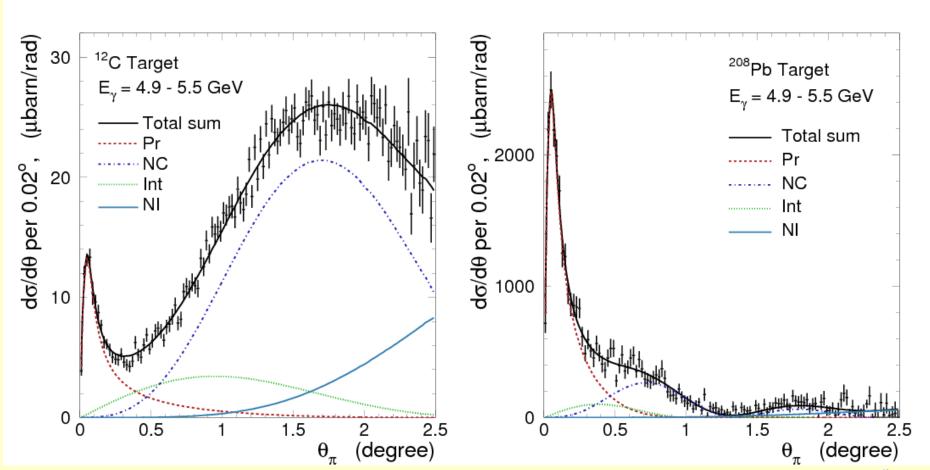
We measure:


- > incident photon energy: Eγ and time
- > energies of decay photons:

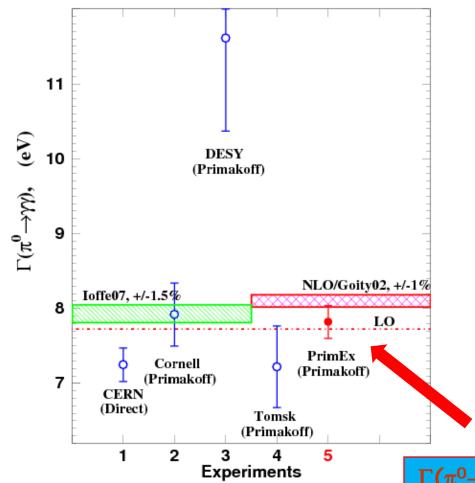

 E_{γ_1} , E_{γ_2} and time

> X,Y positions of decay photons

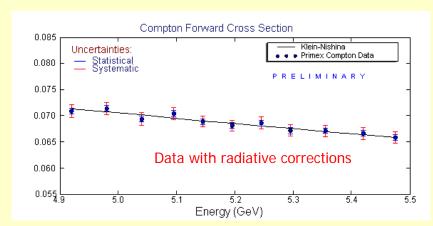
Kinematical constraints:

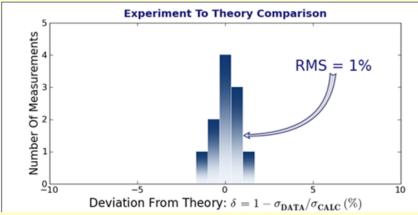

- Conservation of energy;
- Conservation of momentum;
- > m_{yy} invariant mass

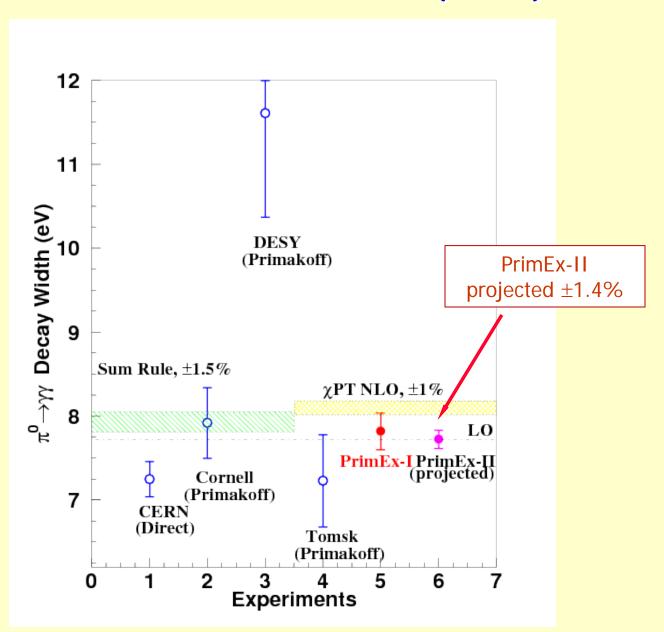


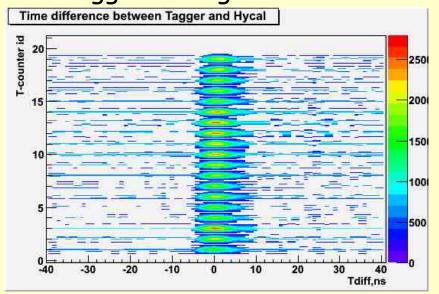

Fit Differential Cross Sections to Extract $\Gamma(\pi^0 \rightarrow \gamma\gamma)$ PrimEx-I (2004)

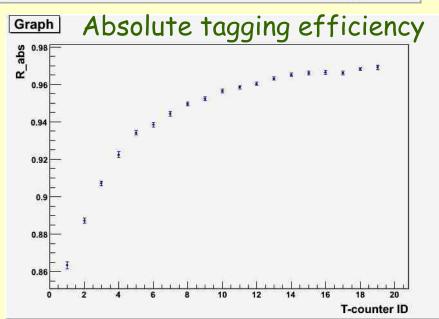
Theoretical angular distributions smeared with experimental resolutions are fit to the data on two nuclear targets:

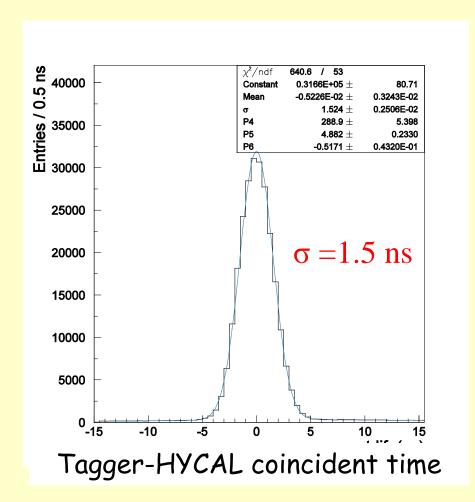



PrimEx-I Result


Systematical uncertainty verification: Compton Cross Section Measurement

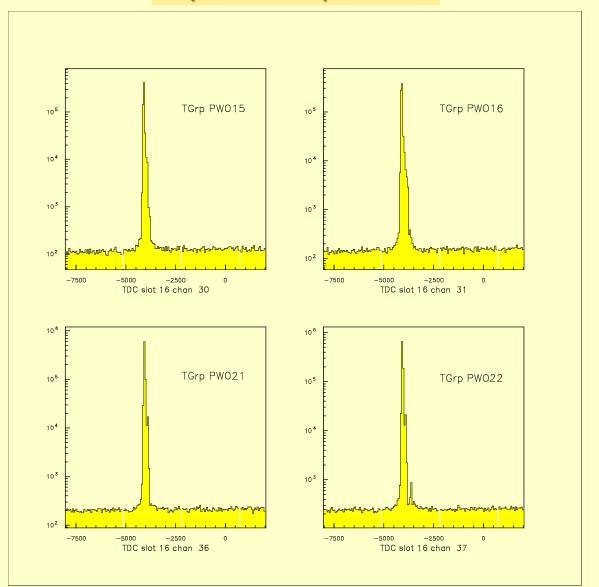

 $\Gamma(\pi^0 \rightarrow \gamma \gamma) = 7.82 \pm 0.14 \text{(stat)} \pm 0.17 \text{(syst)} \text{ eV}$ 2.8% total uncertainty

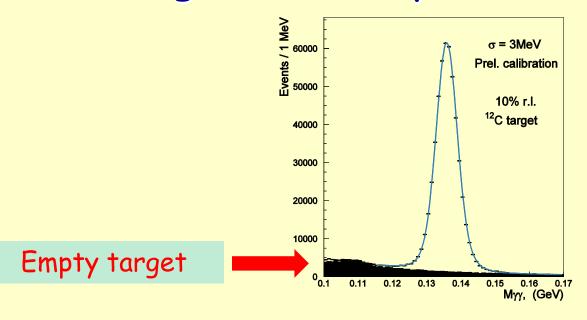

Goal for PrimEx-II (2010)

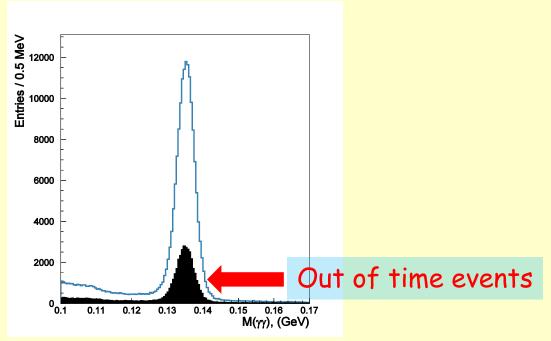


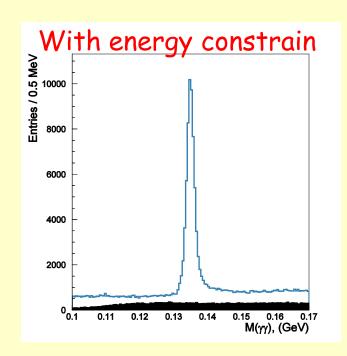
PrimEx-II Data Analysis in Progress

Tagger timing calibration

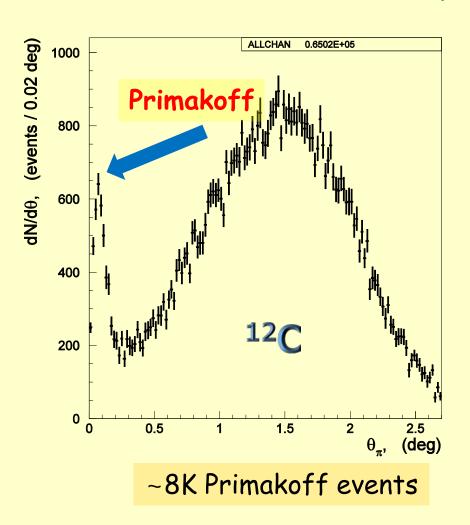


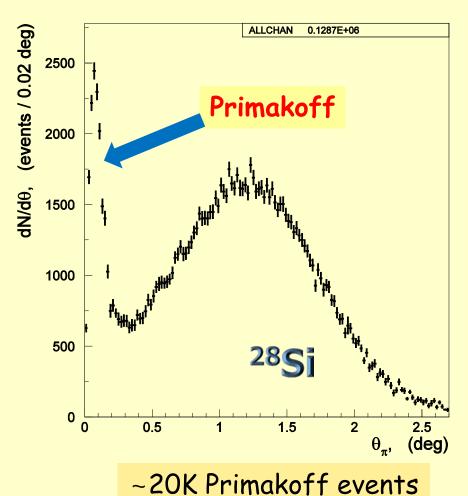



PrimEx-II Data Analysis Continue...

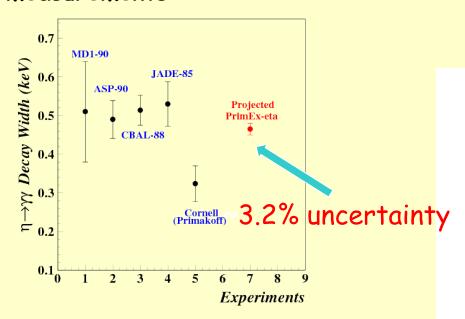

HyCal TDC spectrum

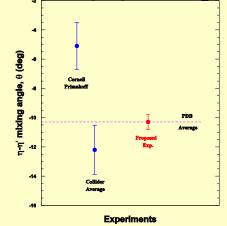
Background study in π^0 reconstruction





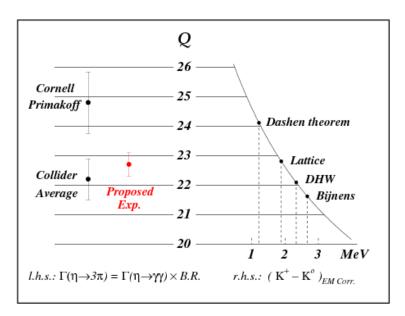
PrimEx-II Experimental Yield (preliminary)


 $(E_{\gamma} = 4.4-5.3 \text{ GeV})$

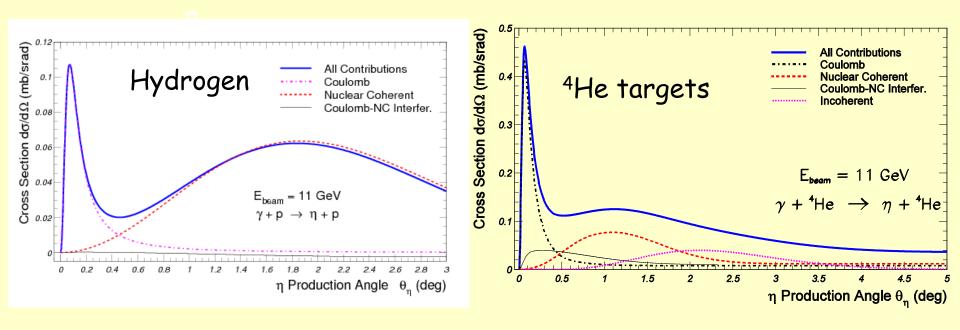


Outcomes from $\Gamma(\eta \rightarrow \gamma \gamma)$ Experiment @ 12 GeV

1. Resolve long standing discrepancy between collider and Primakoff measurements:


2. Extract $\eta - \eta'$ mixing angle:

3. Determine Light quark mass ratio:


$$Q^2 = \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}$$
, where $\hat{m} = \frac{1}{2}(m_u + m_d)$

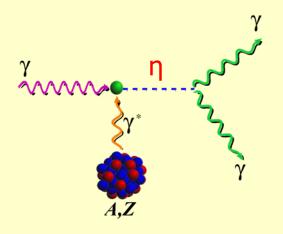
$$\Gamma(\eta \rightarrow 3\pi) \propto |A|^2 \propto Q^{-4}$$

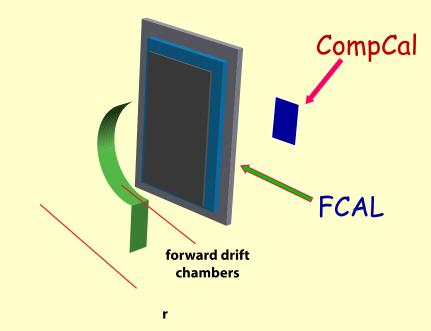
H. Leutwyler Phys. Lett., B378, 313 (1986)

Challenges in the $\eta \rightarrow \gamma \gamma$ Primakoff experiment

Compared to π^0 :

 \blacktriangleright η mass is a factor of 4 larger than π^0 and has a smaller cross section

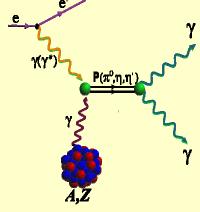

$$\left(rac{d\sigma_{
m Pr}}{d\Omega}
ight)_{
m peak} \propto rac{E^4}{m^3}$$

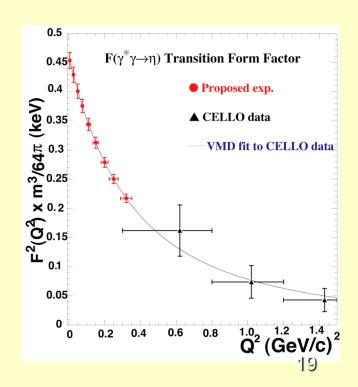

> larger overlap between Primakoff and hadronic processes;

$$\left< \theta_{
m Pr} \right>_{peak} \propto \frac{m^2}{2E^2} \qquad \theta_{NC} \propto \frac{2}{E \bullet A^{1/3}}$$

larger momentum transfer (coherency, form factors, FSI,...)

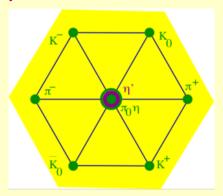
Measurement of $\Gamma(\eta \rightarrow \gamma \gamma)$ in Hall D at 12 GeV





- ➤ Incoherent tagged photon beam (~10.5-11.5 GeV)
- > Pair spectrometer and a TAC detector for the photon flux control
- > 30 cm liquid Hydrogen and ⁴He targets (~3.6% r.l.)
- > Forward Calorimeter (FCAL) for $\eta \rightarrow \gamma \gamma$ decay photons
- CompCal and FCAL to measure well-known Compton scattering for control of overall systematic uncertainties.
- > Solenoid detectors and forward tracking detectors (for background rejection)

Transition Form Factors $F(\gamma \gamma^* \rightarrow p)$ (at Low Q²)


- Direct measurement of slopes
 - Interaction radii: $F_{vv^*P}(Q^2) \approx 1-1/6 \cdot \langle r^2 \rangle_P Q^2$
 - ChPT for large N_c predicts relation between the three slopes. Extraction of $O(p^6)$ low-energy constant in the chiral Lagrangian
- Input for light-by-light scattering for muon (g-2) calculation
- Test of future lattice calculations

Why n is an unique probe for New physics?

- □ The most massive member in the octet of pseudoscalar Goldstone mesons (547.9 MeV/c²)
 - Many open decay channels
 - Sensitive to QCD symmetry breakings

- Due to the symmetries in the strong and EM interactions, the η decay width Γ_n =1.3KeV is extremely narrow (relative to Γ_o =149MeV)
 - The lowest orders of η decays are filtered out in the strong and EM interactions, enhancing the contributions from higher orders by a factor of ~100,000.
- \Box Eigenstate of P, C, CP, and G: $I^GJ^{PC}=0^+0^{-+}$
 - Study violations of discrete symmetries
- □ The η decays are flavor-conserving reactions which are effectively free of SM backgrounds for new physics search.

n decays is a unique probe to test SM and to search for new physics beyond SM: (1) test higher order χ PTh and future lattice QCD predictions; (2) new sources of fundamental symmetry violations; (3) light dark matter.

n Neutral Rare Decay Channels

Mode	Branching Ratio (PDG)	Physics Highlight
π ⁰ 2γ	(2.7±0.5)×10 ⁻⁴	χΡΤh @ O(p ⁶), Lattice QCD
$2\pi^0$	<3.5 × 10 ⁻⁴	CP, P
3γ	<1.6 × 10 ⁻⁵	С
π ⁰ γ	<9×10 ⁻⁵	C, L, gauge inv.
4γ	<2.8 × 10 ⁻⁴	Suppressed (<10 ⁻¹¹)
$\pi^0 \pi^0 \gamma$	<5×10 ⁻⁴	С
$\pi^0 \pi^0 \pi^0 \gamma$	<6 × 10 ⁻⁵	С
$4\pi^0$	<6.9 × 10 ^{- 7}	CP, P

Status of $\eta \rightarrow \pi^0 \pi^0$

theoretical predictions:

BR
$$(\eta \rightarrow \pi\pi)$$

CKM (SM)
$$\leq 2 \times 10^{-27}$$
 (G_F, cancellation)

C. Jarlskog, E. Shabalin, PS T 99 (02) 23

$$\theta$$
 (QCD) $\leq 3 \times 10^{-17} (d_n)$

C. Jarlskog, E. Shabalin, PR D 52 (95) 6327

extended Higgs
$$\leq 1.2 \times 10^{-15}$$

C. Jarlskog, E. Shabalin, PR D 52 (95) 6327

general
$$\leq 3.5 \times 10^{-14} \, (d_n)$$

M.Gorchtein, hep-ph 0803.2906

experimental limits:

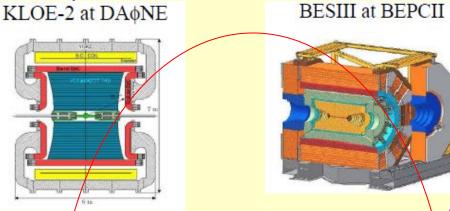
BR
$$(\eta \to \pi^0 \pi^0) \le 3.5 \times 10^{-4}$$

GAMS-4 π , PAN 70 (07) 693

Detection at any level would be signature of P and PC violations from new sources!

Strong CP Problem

- > A term in QCD Lagrangian violates P, T, CP. It only manifests in flavor-conserving phenomena. $L_{\theta} = \theta_{QCD} \frac{g_s^2}{32\pi^2} G \cdot \widetilde{G}$
- When including electro-weak interaction in SM, the QCD vacuum angle becomes: $\bar{\theta} = \theta_{\rm OCD} + {\rm arg~det}(M^{\rm U}M^{\rm D})$
- > Current experimental constraint on $\overline{\theta}$ came from neutron EDM theoretical estimations: $d_n \sim (4\cdot 10^{-17} \div 2\cdot 10^{-15})\overline{\theta} \ e\cdot \mathrm{cm}$ experimental limit: $d_n \leq 2.9 \times 10^{-26} \ e\cdot \mathrm{cm}$ $\overline{\theta} \sim 10^{-10\pm 1}$
- > Such constraint is sensitive to the tree level and loop term cancellation (K. Ottnad, et al., Phys.Lett., B687, 42 (2010)):

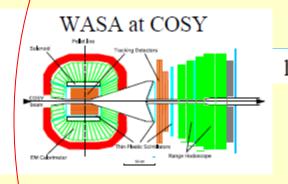

$$d_n^{tree} = (2.9 \pm 1.1) \times 10^{-16} \overline{\theta} \ e \cdot \text{cm}$$
 $d_n^{loop} = -3.0^{+1.1}_{-0.8} \times 10^{-16} \overline{\theta} \ e \cdot \text{cm}$

> $\eta \rightarrow 2\pi^0$ may shed light on the Strong CP problem:

$$2Br(\eta \to 2\pi^0) \sim 180\overline{\theta}^2$$
 If $\overline{\theta} \sim 10^{-4}$, then $Br(\eta \to 2\pi^0) \sim 10^{-6}$

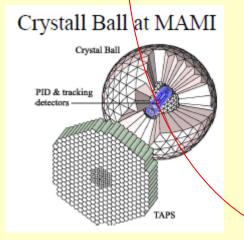
World Competition in Rare n Decays

e⁺e⁻ Collider

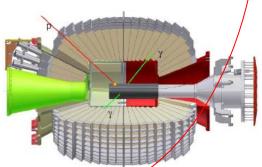


Low energy η -facilities

High energy

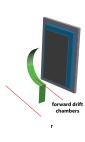

η-facility

Fixed-target



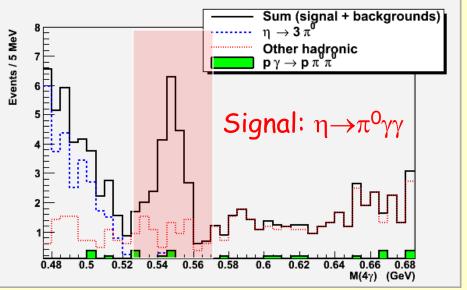
hadroproduction

photoproduction



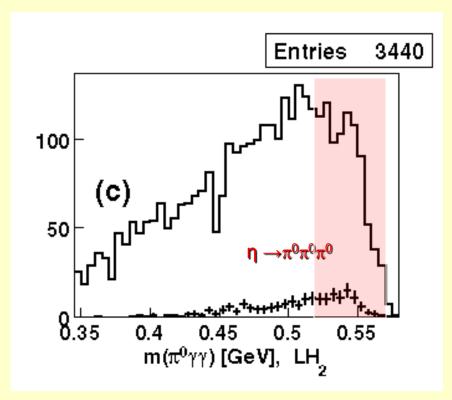
CBELSA/TAPS at ELSA

↓


JEF at Jlab

2-1

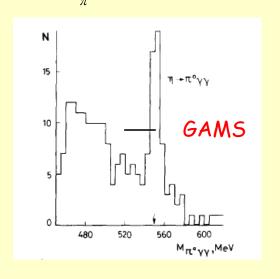
Filter Background with n Energy Boost


Jlab: high energy η production ($E_{\gamma} = 9-11.7 \text{ GeV}$)

Note:

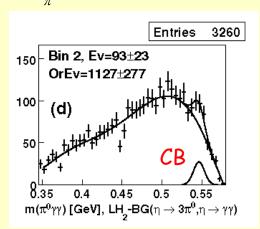
- Statistics is normalized to 1 beam day.
- ►BG will be further reduced by requiring only one pair of γ 's to have the π^0 invariant mass.

Other competitors (CB, KLOE, BES-III, WASA, CBELSA/TAPS): low energy n production

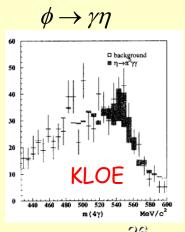

S. Prakhov et al. Phy.Rev., C78,015206 (2008)

Advantages of JLab

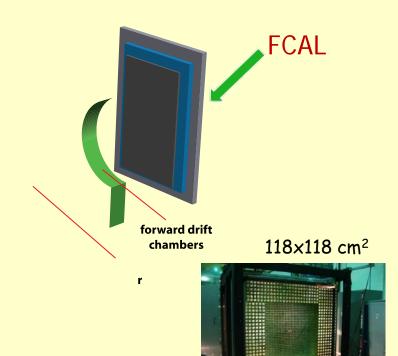
- lacktriangle High energy tagged photon beam to reduce the background from $\eta
 ightarrow 3\pi^0$
 - \triangleright Lower relative threshold for γ -ray detection
 - > Improved missing energy resolution
- Recoil proton detection to reduce non-coplanar backgrounds like non-resonant $\gamma p \rightarrow \pi^0 \pi^0 p$
- ☐ High resolution, high granularity PbWO₄ Calorimeter
 - > improved invariant mass, energy and position resolutions
 - ightharpoonup fewer overlapping showers, thus reducing background from $\eta
 ightarrow 3\pi^0$
 - > Fast decay time (~20ns) and Flash ADCs → reduced pile-up
- ☐ High statistics to provide a precision measurement of Dalitz plot


High energy n-production

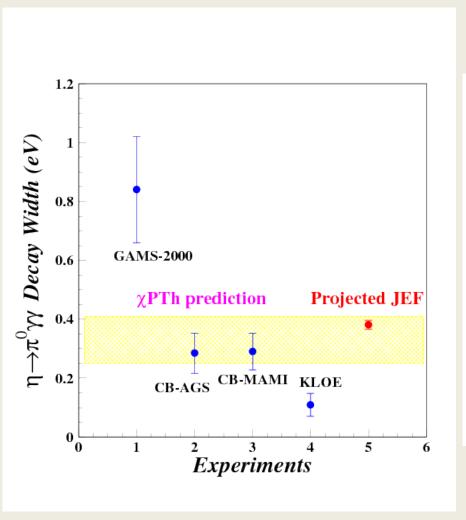
$$E_{\pi} = 30 \text{ GeV/c}$$

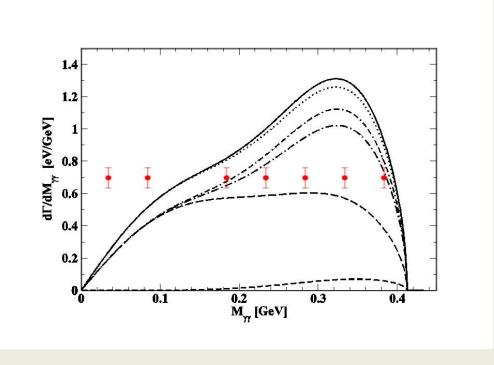


Low energy n-production

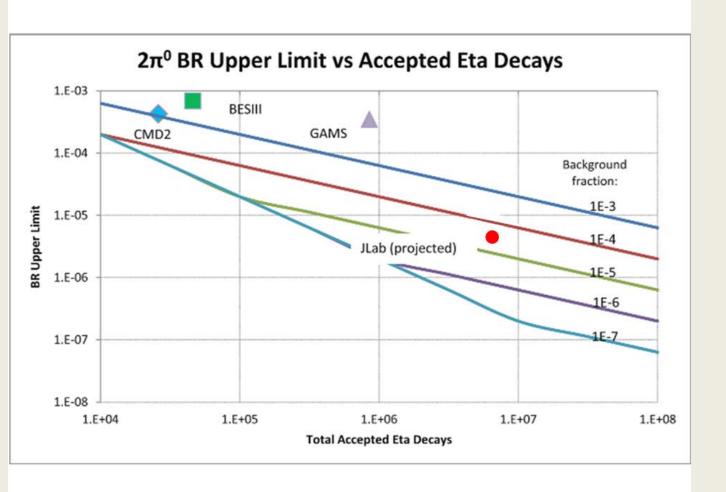

$$E_{\pi} = 720 \text{ MeV/c}$$

$$\phi$$
 production $\sqrt{s} = 1020 \text{ MeV}$


Proposed JEF Experiment in Hall D


Simultaneously measure the $\eta{\to}\pi^0\gamma\gamma$, $\eta{\to}\pi^0\pi^0$, $\eta{\to}3\gamma$

- \square n produced on LH₂ target with 9-11.7 GeV tagged photon beam: $\gamma+p \rightarrow \eta+p$
- Further reduce $\gamma p \rightarrow \pi^0 \pi^0 p$ and other background by detecting recoil p's with GlueX detector
- Upgraded Forward Calorimeter with PbWO₄ (FCAL-II) to detect multi-photons from the n decays


Projected JEF Measurement on $\eta \rightarrow \pi^0 2\gamma$

E. Oset., Phys. Rev., D77, 073001 (2008)

Improvement on SM Forbidden Channels

The upper limit for the branching ratio at ~90% CL is estimated by:

BR upper limit

$$\approx 2\sqrt{\frac{f_{bkg}}{N_{\eta} \bullet \varepsilon_{accep}}}$$

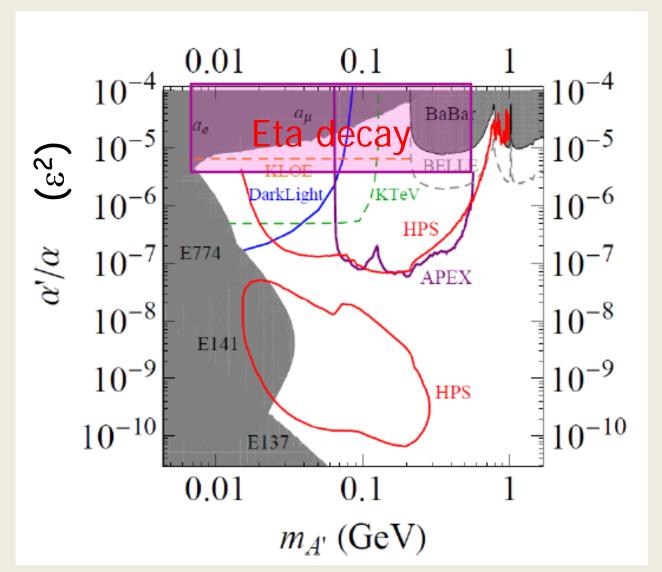
Improve the upper limits on the SM forbidden neutral decay channels up to two orders of magnitude!

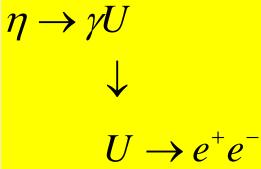
GlueX under construction

Tagger magnet installation

Summary

- ☐ Testing the symmetries of SM will help us understanding fundamental issues in physics: confinement QCD and new physics beyond Standard Model.
- The PrimEx experiments will provide precision tests of continuous symmetries in confinement QCD by a study of electromagnetic properties of π^0 , η and η' via the Primakoff effect.
- Measurements of various η rare decays with GlueX will be sensitive probes for testing the discrete symmetries of SM and searching for the evidences of new physics beyond: (1) test higher order χPTh and future lattice QCD predictions; (2) tighten the constrains on new sources of C, P and CP symmetry violations; (3) investigate the dark photon.
- □ Jlab offers great opportunities for precision experiments.


This project is supported by NSF


The End

Thanks you!

Search for Dark Photon in η Decay

M.Reece, L.T. Wang, JHEP 07 (2009) 051

