Homework #3, Problems: 17, 18, 21, 22, 29 in chapter 2 and 2, 4 in chapter 3

2-17 \(\Delta m = m_{Ra} - m_{Rn} - m_{He} \) (an atomic unit of mass, the u, is one-twelfth the mass of the \(^{12}\)C atom or 1.660 54 \(\times \) 10\(^{-27} \) kg)

\[
\Delta m = (226.025 4 - 22.017 5 - 4.002 6) \text{ u} = 0.005 3 \text{ u}
\]

\[
E = (\Delta m)(931 \text{ MeV/u}) = (0.005 3 \text{ u})(931 \text{ MeV/u}) = 4.9 \text{ MeV}
\]

2-18 (a) The mass difference of the two nuclei is

\[
\Delta m = 54.927 9 \text{ u} - 54.924 4 \text{ u} = 0.003 5 \text{ u}
\]

\[
\Delta E = (931 \text{ MeV/u})(0.003 5 \text{ u}) = 3.26 \text{ MeV}.
\]

(b) The rest energy for an electron is 0.511 MeV. Therefore,

\[
K = 3.26 \text{ MeV} - 0.511 \text{ MeV} = 2.75 \text{ MeV}.
\]

2-21

\[
\begin{align*}
e(-) & \quad e(+) \\
K, p(e-) & \quad \text{positron at rest}
\end{align*}
\]

\[
E, p
\]

\[
\gamma, \theta
\]

Conservation of mass-energy requires \(K + 2mc^2 = 2E \) where \(K \) is the electron’s kinetic energy, \(m \) is the electron’s mass, and \(E \) is the gamma ray’s energy.

\[
E = \frac{K}{2} + mc^2 = (0.500 + 0.511) \text{ MeV} = 1.011 \text{ MeV}.
\]

Conservation of momentum requires that \(p_e = 2p \cos \theta \) where \(p_e \) is the initial momentum of the electron and \(p \) is the gamma ray’s momentum, \(\frac{E}{c} = 1.011 \text{ MeV}/c \). Using \(E^2 = p^2c^2 + (mc^2)^2 \)

where \(E_e \) is the electron’s total energy, \(E_e = K + mc^2 \), yields

\[
p_e = \frac{1}{c} \sqrt{K^2 + 2Kmc^2} = \frac{\sqrt{(1.00)^2 + 2(1.00)(0.511) \text{ MeV}}}{c} = 1.422 \text{ MeV}/c.
\]

Finally, \(\cos \theta = \frac{p_e}{2p} = 0.703 \); \(\theta = 45.3^\circ \).

2-22 (a) Using the results of Problem 2-6 and substituting numerical values
\[p \text{ (in MeV/c)} = 300BR = (300)(2.00 \text{ T})(0.343 \text{ m}) = 206 \text{ MeV/c}. \]

Since the momentum of the \(K^0 \) is zero before the decay, conservation of momentum requires the pion momenta to be equal in magnitude and opposite in direction. The pion’s speed \(u \) may be found by noting that
\[
\frac{p}{E} = \frac{mu}{mc^2} = \sqrt{1 - \frac{u^2}{c^2}} \quad \text{or} \quad u = \frac{pc}{E} \quad \text{where} \quad p \text{ is the pion momentum and } E \text{ is the pion’s total energy.} \]

Thus for either pion,
\[
\frac{u}{c} = \frac{pc}{E} = \frac{206 \text{ MeV}}{\sqrt{(206 \text{ MeV})^2 + (104 \text{ MeV})^2}} = 0.827. \]

\(\text{(b) Conservation of mass-energy requires that } E_{K^0} = 2E \text{ where } E_{K^0} \text{ is the total energy of a pion. As the } K^0 \text{ pion decays at rest,}
\]
\[
E_{K^0} = m_{K^0}c^2 = 2\sqrt{p^2c^2 + \left(mc^2\right)^2} = 2\sqrt{(206)^2 + (140)^2} \text{ MeV} = 498 \text{ MeV},
\]

or \(m_{K^0} = 498 \text{ MeV/c}^2 \).

2-29 The energy of the first fragment is given by \(E_1^2 = p_x^2c^2 + \left(m_1c^2\right)^2 = (1.75 \text{ MeV})^2 + (1.00 \text{ MeV})^2; \)
\(E_1 = 2.02 \text{ MeV}. \) For the second, \(E_2^2 = (2.00 \text{ MeV})^2 + (1.50 \text{ MeV})^2; \)
\(E_2 = 2.50 \text{ MeV}. \)

(a) Energy is conserved, so the unstable object had \(E = 4.52 \text{ MeV} \). Each component of momentum is conserved, so the original object moved with
\[
p^2 = p_x^2 + p_y^2 = \left(\frac{1.75 \text{ MeV}}{c}\right)^2 + \left(\frac{2.00 \text{ MeV}}{c}\right)^2.
\]

Then for \((4.52 \text{ MeV})^2 = (1.75 \text{ MeV})^2 + (2.00 \text{ MeV})^2 + (mc^2)^2 \); \(m = 3.65 \text{ MeV/c}^2 \).

(b) Now \(E = \gamma mc^2 \) gives \(4.52 \text{ MeV} = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \text{ 3.65 MeV; } 1 - \frac{v^2}{c^2} = 0.654 \text{ and } v = 0.589c. \)

3-2 Assume that your skin can be considered a blackbody. One can then use Wien’s displacement law,
\[\lambda_{\text{max}}T = 0.289 \times 10^{-2} \text{ m} \cdot \text{K} \text{ with } T = 35^\circ \text{C} = 308 \text{ K} \text{ to find}
\]
\[
\lambda_{\text{max}} = \frac{0.289 \times 10^{-2} \text{ m} \cdot \text{K}}{308 \text{ K}} = 9.41 \times 10^{-6} \text{ m} = 9.410 \text{ nm}.
\]
3-4 (a) From Stefan’s law, one has \(\frac{P}{A} = \sigma T^4 \). Therefore,

\[
\frac{P}{A} = (5.7 \times 10^{-8} \text{ W/m}^2 \text{K}^4)(3000 \text{ K})^4 = 4.62 \times 10^6 \text{ W/m}^2 .
\]

(b) \(A = \frac{P}{4.62 \times 10^6 \text{ W/m}^2} = \frac{75 \text{ W}}{4.62 \times 10^6 \text{ W/m}^2} = 16.2 \text{ mm}^2 . \)