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Theoretical Discussion

Lenses focus images by refracting (bending) the light rays emanating from the source in such a way that all
rays leaving a given point that are able to pass through the lens will re-combine at a single point. Figure ??

shows the paths several representative rays may take as they traverse the lens. The points marked f in the
figure are the focal points of the lens. The focal points are defined by the following rules:

FIG. 1: Ray trajectories for a convex lens

• A ray parallel to the axis and falling on the lens passes through a focal point f .

• A ray falling on the lens after passing through a focal point will emerge from the lens parallel to the
axis.

The second rule is really the same as the first, if the roles of the object and image are reversed.

The distance from the object (source of light rays) to the center of the lens is called the object length o.
The distance from the image formed by the lens to the center of the lens is called the image length i. The
distance from the center of the lens to the focal point is called the focal length. It is usually denoted by f ,
(as in f -stop on a camera), but we will call it lf to avoid confusion with the focal point. Figure ?? shows
these experimental parameters. For paraxial rays (rays lying close to the principal axis which runs through
the center of the lens and perpendicular to the lens surface), the object distance o, image distance i and
focal length lf are related by the thin lens formula:
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For a given object distance, the longer the focal length, the farther from the lens the image will be located.

In today’s experiment, you will measure the focal length of a particular lens in two different ways and
numerically compare the results of your measurements.

Procedure

Part I: Focal length for finite object distances

1. Repeat the following steps for 3 different values of the object distance o. Each value of o should differ
from the others by at least 2 cm.



FIG. 2: Experimental parameters for the thin lens formula

(a) Record o.

(b) Find the image distance i by bringing the viewing screen close to the lens and moving it away
slowly. The image will decrease in size and come into focus. Adjust the distance until you get the
sharpest possible focus. Record i.

(c) Determine lf from the thin lens formula, 1
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.

2. When you have three different measurements of lf , calculate a mean value 〈lfI〉 and rms (root mean
square) uncertainty σI using the following algorithms:
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Part II: Focal length for infinitely distant objects

In this case you will image an object “at infinity”. Infinity is, of course, relative. In fact, it must only be
very large compared to the focal length. You might attempt to form an image of an object that is outside,
by positioning your lens table in front of one of the windows (making sure that the blinds are open). An
object on the other side of the room will also serve. To the extent that the object is very far away,
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1. Locate the image distance i for your infinitely distant object by following the method of Part I, section
1-b. Record i∞.

2. Calculate and record lfII using the approximation
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Part III: Comparisons

Numerically compare 〈lfI〉, and lfII by taking the absolute value of their difference. Remember that the
difference, unlike the fractional discrepancy, does have units. Does the difference between them lie within
the uncertainty σI? If so, then you can conclude that methods I and II are equivalent means of determining
the focal length. Otherwise, one of them (you don’t know which) is superior to the other.


