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Theoretical Discussion

All photons have a definite energy Eγ , which can be written in terms of the photon wavelength λ and
frequency ν as

Eγ = hν =
hc

λ

where c ≈ 3×108 m/s is the speed of light and h is a constant called Planck’s constant. The numerical value
of Planck’s constant is

h = (6.62606876± 0.00000052)× 10−34 J · s

in SI units, or

h = (4.13566727± 0.00000016)× 10−15 eV · s

in atomic units. In either case, h has the dimensions of an energy times a time and it is, along with the speed
of light c and the fine structure constant α, one of the most fundamental and important physical constants
known to modern physics. It’s not obvious, but h also has the same dimensions as angular momentum[1]. It
was Niels Bohr’s hypothesis that the angular momentum of an electron in orbit around a nucleus is quantized
in units of h that led him to propose the so-called Bohr model of the hydrogen atom. This model explained
the discrete light spectrum emitted by an electrically excited hydrogen plasma perfectly, and, although it
was later shown to be an incomplete description of atomic spectra in general, it provided the first theoretical
description of an otherwise unfathomable phenomenon in terms of the newly developed quantum theory.
Our lab today entails observing and making measurements of the hydrogen spectrum in order to verify the
essential elements of Bohr’s atomic model.

Quantizing the electron orbit: Although a complete description of the Bohr model is far beyond the
scope of this course, the fundamentals of the theory are surprisingly easy to grasp. If you assume that the
electron follows a circular orbit around the nucleus[2] the angular momentum L of the electron is equal to

L = mvr

where m is the electron mass, v is the tangential velocity of the electron in its orbit and r is the orbital
radius. The magnitude of the electric force acting on the electron due to the proton is equal to

F =
e2

4πε0r2

where e = 1.602 × 10−19 C is the magnitude of the charge of both the electron and the proton. You are
probably more familiar with seeing the force written in the form

F =
ke2

r2

These two forms are equivalent, because in fact,

k =
1

4πε0

There are two reasons why we are not using the constant k in this lab write-up.



1. The constant k is typically not used by working scientists. It is really only used in algebra-based
introductory physics classes. The rest of the world uses 1

4πε0
.

2. The Physics 202 students have to use the form 1
4πε0

, both because many of them in the future will
have to work with chemists and physicists who also use that form, and because their textbooks use it.
During the summer, we have a mixed lab group, including both Physics 102 and Physics 202 students.
Unless we wish half the class to be crunching one set of numbers and the other half crunching a different
set (which we don’t), we have to choose one or the other way of writing this factor. Since the form
F = e2

4πε0r2 is the standard one, we are inclined to prefer it. Sorry if this causes you any confusion.
Your lab instructor will be happy to help out if this is the case. Historically, there have not been any
problems with this issue.

For an object in uniform circular motion, the central force is related to the orbital velocity and the orbital
radius according to

F = ma =
mv2

r

Combining the previous two equations gives

e2

4πε0r2
=

mv2

r

which you can solve for v2 to get

v2 =
e2

4πε0mr

Bohr’s hypothesis that the angular momentum of the electron’s orbital motion is quantized means that only
certain values of L are allowed. In particular, the angular momentum can only have the values

L = mvr =
nh

2π
n = 1, 2, 3, . . .

You can write the quantization condition in terms of v as

v =
nh

2πmr

and then substitute this into the expression for v2 above to get a quantization condition for the radius r:

v2 =
e2

4πε0mr
=

n2h2

4π2m2r2

so that

rn =
n2h2ε0
πme2

where the label n on the radius tells you which quantum orbit the electron is in. The lowest energy orbital
is the first, with n = 1; higher energy (more loosely bound) orbital radii can be calculated by inserting
n = 2, 3, 4, . . .



Quantizing the electron energy levels: The kinetic energy K of the electron in its orbit is simply

K =
1
2
mv2 =

e2

8πε0r

where we have substituted the expression for v2 that we derived from the expression for the relation between
the central force and the orbital velocity. The potential energy U can be found from Coulomb’s law. It is

U = − e2

4πε0r

The total energy E is just the sum of the kinetic and potential energies.

E =
e2

8πε0r
− e2

4πε0r
= − e2

8πε0r

By substituting the expression for the quantized radii in the above expression, we get the energy levels of
the hydrogen atom:

En = − me4

8h2ε20n
2

n = 1, 2, 3, . . .

The hydrogen line spectrum: When an electron changes from one energy level to another, the energy of
the atom must change as well. It requires energy to promote an electron from one energy level to a higher
one. This energy can be supplied by a photon whose energy Eγ is given in terms of its frequency ν or
wavelength λ as

Eγ = hν =
hc

λ

Since the energy levels are quantized, only certain photon wavelengths can be absorbed. If energy is put
into the atomic gas, the electrons will be promoted to higher energy levels and will then fall back down into
the lowest energy state (ground state) in a cascade of transitions. Each time the energy level of the electron
changes, a photon will be emitted and the energy (wavelength) of the photon will be characteristic of the
energy difference between the initial and final energy levels of the atom in the transition. The energy of the
emitted photon is just the difference between the energy levels of the initial (ni) and final (nf ) states.

Eγ =
hc

λ
= Eni − Enf

= − me4

8h2ε20

(
1
n2

i

− 1
n2

f

)

The set of spectral lines for a given final state nf are generally close together. In the hydrogen atom they
are given special names. The states for which nf = 1 are called the Lyman series. These transitions are in
the ultraviolet. The states for which nf = 2 are called the Balmer series and many of these spectral lines
are in the visible. We will be measuring the wavelengths of the Balmer series lines in today’s lab.

Procedure and Analysis

The “colors” associated with some of the Balmer series lines are shown in figure 1.



ni “color”

3 red

4 blue-green

5 blue

6 violet

FIG. 1: The Balmer series lines of the hydrogen spectrum

1. Measure the wavelengths for the ni = 3, 4, 5, and 6 lines in the Balmer series of hydrogen using the
diffraction grating and the spectrometer. Recall that the relation between the wavelength and the
observation angle θ for the 1st order images (m = 1) is given by the grating equation:

d sin θ = λ

The measurement will be very similar to last week’s lab except in this case you will use the angle
table on the spectrometer rather than trigonometry to determine the observation angles for the various
spectral lines. Bear in mind that the observation angle is always measured with respect to the normal
to the diffraction grating. A diagram of the spectrometer table is shown in figure 2.

FIG. 2: The spectrometer table

2. Calculate the photon energies for each of your measured lines using the relation

Eγ =
hc

λ
(1)

and report it in electron volts (eV).

3. Calculate the corresponding transition energies for the Balmer series lines from the equation



Eni
− Enf

= − me4

8h2ε20

(
1
n2

i

− 1
22

)
(2)

where nf has been set equal to 2. Report your transition energies in electron volts (eV).

4. Numerically compare your photon energies to your transition energies by calculating their fractional
discrepancy.

Useful constants and parameters

The grating spacing is d = 1
600 mm.

electron mass m 9.11× 10−31 kg
electron charge e 1.602× 10−19 C
electric permittivity constant ε0 8.85× 10−12 C2/N ·m2

speed of light c 3.0× 108 m/s

The value of Planck’s constant was given at the beginning of the lab. The conversion factor between Joules
and electron-volts is

1 eV = 1.602× 10−19 J (3)

Really valuable hints!!

1. If you simply use the value of Planck’s constant h as expressed in eV · s in equation 2, you are going
to get the wrong answer. A clever and patient individual can use dimensional analysis to figure out
why this is so. (Are you a clever and patient individual? It’s a good thing to be if you want to
be a scientist!) Instead, you are going to have to calculate the answer first in Joules, and then use
the conversion factor from equation 3 to get your answer in eV. On the other hand, you can directly
calculate the photon energies from equation 1 using the value of Planck’s constant as expressed in
eV · s. As before, dimensional analysis reveals why this works in this case.

2. For the different lines in the balmer series, only the factor
(

1
n2

i
− 1

22

)
in equation 2 changes. The factor

me4

8h2ε20
is the same for each line. It makes sense to calculate this factor once at the beginning, and then

multiply it by the other factors that you calculate for each separate line.

3. You will almost certainly discover that if you simply plug the numbers from the table of parameters
into equation 2, your calculator will crash. This is because the numbers in the intermediate steps of the
calculation are too big for most calculators to handle. The way around this problem is to separately
calculate the mantissa and exponent for the numbers. (You may recall from high school that a number
in scientific notation is written in the form n × 10x. In this equation, n is the mantissa and x is the
exponent). So, supposing that you had to calculate the quantity

y =
(n1 × 10x1)(n2 × 10x2)
(n3 × 10x3)(n4 × 10x4)



then one way to do it would be to calculate

y =
(n1)(n2)
(n3)(n4)

× 10(x1+x2−x3−x4)

Unless your calculator is REALLY expensive, this is how you’re going to have to do it for this calcu-
lation.

[1] Angular momentum is linear momentum times a length, which works out to have the dimensions of
mass × (length)2 / time. This is the same as energy × time.

[2] This assumption is not, strictly speaking, correct. However, the quantities we are interested in—the angular
momentum, average velocity and electrostatic potential energy—can all be correctly calculated for the hydrogen
atom as if this assumption were true. This is because, even though quantum mechanics tells us that the actual
trajectory of any given electron in its orbit cannot be predicted in advance, or even observed without modifying it,
the average orbit of an electron does follow the classic circular trajectory and we can calculate certain quantities
as if the hydrogen atom were a classical system, subject to certain quantum mechanical constraints. A system for
which quantum mechanical constraints can be applied ex post facto to the classical dynamical variables of that
system is called semi-classical. The hydrogen atom is amenable to a semi-classical analysis, but atoms in general
are not, and the derivation presented here does not work for atomic energy levels in the general case.


