Dietary controls on extinction versus survival among avian megafauna in the late Pleistocene

Kena Fox-Dobbs Earth Sciences Department, University of California–Santa Cruz, Santa Cruz, California 95064, USA
Thomas A. Stidham Department of Biology, Texas A&M University, College Station, Texas 77843, USA
Gabriel J. Bowen Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana 47907, USA
Steven D. Emslie Biology and Marine Biology Department, University of North Carolina Wilmington, Wilmington, North Carolina 28403, USA
Paul L. Koch Earth Sciences Department, University of California–Santa Cruz, Santa Cruz, California 95064, USA

ABSTRACT
The late Pleistocene extinction decimated terrestrial megafaunal communities in North America, but did not affect marine mammal populations. In coastal regions, marine megafauna may have provided a buffer that allowed some large predators or scavengers, such as California condors (Gymnogyps californianus), to survive into the Holocene. To track the influence of marine resources on avifauna we analyzed the carbon, nitrogen, and hydrogen isotope composition of collagen from late Pleistocene vultures and raptors, including species that survived the extinction (condor, bald eagle, golden eagle) and extinct species (teratorn, black vulture). At the Rancho La Brea and McKee tar pits of southern California, isotope values for extinct teratorns (Teratornis merriami, n = 10) and black vultures (Coragyps occidentalis, n = 8) show that they fed entirely in a terrestrial C3 ecosystem. In contrast, La Brea condors cluster into two groups, one with a terrestrial diet (n = 4), and the other with a strong marine influence (n = 5). At localities in the American southwest, Texas, and Florida, where condors became extinct, they have isotope values indicating entirely terrestrial diets (n = 10). Our results suggest that dependence upon terrestrial megafaunal carrion as a food source led to the extinction of inland California condor populations and coastal populations of teratorns and black vultures at the Pleistocene-Holocene boundary, whereas use of marine foods allowed coastal condor populations to survive.

Keywords: California condor, paleoecology, stable isotopes, late Pleistocene extinction.

INTRODUCTION
In the late Pleistocene, the skies of North America teemed with a variety of vultures and raptor species, approximately half of which became extinct at the end of the Pleistocene (Grayson, 1977). This avian extinction coincided with a 72% reduction in generic diversity of mammalian megafauna (Koch and Barrosky, 2006; Emslie, 1987). These two extinction events may be linked if avian scavengers were dependent upon megafaunal carrion as a food source.

The paleoecology of late Pleistocene vultures and raptors has been deduced from morphologic analysis (Hertel, 1995; Campbell and Tonni, 1981). A study of feeding morphology within the vulture guild at the La Brea tar pits in southern California indicated that species with intermediate cranial morphologies were more likely to survive into the Holocene than those with extreme morphologies (Hertel, 1994). For example, the California condor (Gymnogyps californianus), which has a non-specialized cranial morphology, survived the extinction event along the Pacific coast. Yet this intermediate morphology did not correlate with condor survival elsewhere in North America. Pleistocene condors were distributed across much of the continent south of the Last Glacial Maximum ice sheets (Steadman and Miller, 1987), but by 10 ka they had disappeared everywhere except the Pacific coast (Koford, 1953; Emslie, 1988). We hypothesize that condors may have survived in western coastal regions if they scavenged both marine and terrestrial mammal carcasses. Whales and seals were not affected by the late Pleistocene extinction, so their carcasses may have provided a consistent food source for condor populations along the Pacific coast (Koford, 1953; Emslie, 1987; Chamberlain et al., 2005).

We use the stable carbon (δ13C), nitrogen (δ15N), and hydrogen (δ2H) isotope composition of bone collagen to quantify terrestrial versus marine resource use by late Pleistocene condors, vultures, and raptors. Carbon and nitrogen in collagen are supplied by an animal’s diet, providing a proxy for foraging behavior (following discussion based on Schoeninger and DeNiro, 1984; Koch, 1998; Kelly, 2000). The δ13C values of terrestrial foodwebs primarily reflect the biomass fractions of C3 and C4 plants. The δ15N values of terrestrial ecosystems are determined by environmental factors, such as aridity, that affect plant and soil nitrogen cycling dynamics. Both δ13C and δ15N values increase with trophic level, though the increase is much stronger for nitrogen. Marine foodwebs are typically enriched in 15N relative to terrestrial foodwebs, and have δ13C values intermediate between those for C3 and C4 terrestrial ecosystems.

While the carbon and nitrogen dual-isotope approach is commonly used to reconstruct the proportions of marine and terrestrial food sources in the diets of top consumers, this system cannot be used to differentiate between an arid C3 terrestrial diet and a marine diet with a high δ15N and δ13C values. We use hydrogen isotopes as an additional proxy to further identify marine food sources in the diets of fossil raptors and vultures. Because environmental water represents the source of hydrogen during photosynthesis, the higher δ2H values of ocean water (0‰) relative to most continental freshwater (growing season precipitation values for North America range from −150‰ to −20‰) should cause marine ecosystems to be δ2H enriched relative to terrestrial ecosystems (Bowen et al., 2005). A significant fraction of the nonexchangeable hydrogen in vertebrate proteins such as collagen comes from dietary protein (Hobson et al., 1999), and as such can be used to identify the presence of marine food in the diets of top consumers.

Using these stable isotopes we examined diets of late Pleistocene avian scavengers (extant—condor; extinct—teratorn [Teratornis merriami]; locally extinct—western black vulture [Coragyps occidentalis]) and raptors (extant—bald eagle [Haliaeetus leucocephalus] and golden eagle [Aquila chryseetos]) from coastal southern California. We use these data to correlate diet with species survival across the late Pleistocene extinction. We then explore the pattern of condor extinction at the continental scale by comparing the diets of condors from La Brea to those of condors and other vultures from late Pleistocene sites across North America where condors went extinct (Fig. 1). The δ15N and δ2H values for the La Brea condors were presented in Chamberlain et al. (2005), and here we present δ13C values and 14C dates for the same nine individuals.

© 2006 Geological Society of America. For permission to copy, contact Copyright Permissions, GSA, or editing@geosociety.org.
Geology; August 2006; v. 34; no. 8; p. 685–688; doi: 10.1130/G22571.1; 3 figures; 1 table; Data Repository item 2006138.
METHODS AND MATERIALS

Collagen extraction methods and details of stable isotope analysis are outlined in detail in the GSA Data Repository (Appendix A). Stable isotope compositions are reported using delta (δ) notation and are referenced to Vienna Pee Dee belemnite, air, and Vienna standard mean ocean water for carbon, nitrogen, and hydrogen, respectively. Samples were analyzed in duplicate for their hydrogen isotope ratios, and the mean of the replicate analyses is presented here. A few samples (5) that gave unusually high variability (1σ > 5‰) among replicates were culled from the δ2H data set. As there is no agreed upon calibration curve for the conversion of 14C ages > 21,000 yr B.P. into calendar years, all ages are presented as uncalibrated 14C dates. Quantitative analyses were done using SYSTAT 10 and JMP 5.0.1a statistical software. Prior to the application of parametric statistics, all data were tested for normal distributions.

VULTURE AND RAPTOR PALEOECOLOGY AT LA BREA

Stable Isotope Results

Means and standard deviations for the La Brea vulture and raptor species and a complete list of specimens and isotope values are supplied in Appendix B (see footnote 1). Carbon and nitrogen isotope distributions differ significantly among species (MANOVA—Pillai’s Trace test, p < 0.0001), and post-hoc pair wise comparisons are significant between all species (F-test; p < 0.05), except for condors and bald eagles. For the set of species for which we have sufficient data for all three chemical elements (condors, teratorns, and black vultures), isotope distributions also differ significantly among species (MANOVA—Pillai’s Trace test, p < 0.001).

Background for Dietary Interpretations

We assume that megafauna were the primary terrestrial resource available to avian scavengers from the tar pits. Isotope values for La Brea herbivores and carnivores range on average from −22‰ to −18‰ for carbon, and from 4‰ to 12‰ for nitrogen (Coltrain et al., 2004). These δ13C values indicate that the La Brea ecosystem was almost entirely dominated by C3 plants, as is the case today. Among the herbivore species, grazers have higher δ15N values than browsers, and carnivores have higher values than herbivores. To compare isotope data from vultures and raptors to the megafauna they scavenged upon, we assume trophic level 13C and 15N enrichments of 1‰ and 4‰, respectively (Chamberlain et al., 2005).

Hydrogen isotope ratios of collagen for marine-feeding vertebrates have not been reported in the literature. Therefore we prepared and analyzed bone collagen from two large modern seabird species (Phalacrocorax penicillatus—Brandt’s cormorant [n = 2]; Pelecanus occidentalis—brown pelican [n = 2]) that are known piscivores from coastal California. The δ2H values of the seabirds range from −14‰ to 28‰, suggesting that marine feeders are likely to have bone collagen δ2H values greater than −15‰. For comparison, bone collagen δ2H values reported for white-tailed deer (Cormie et al., 1994) range from −91‰ to +13‰. Although these data indicate some overlap between the δ2H values of terrestrial and marine feeders, values greater than −20‰ were only observed for deer in areas where environmental water δ2H values were very high (i.e., similar to ocean water values) due to high δ2H values of precipitation and high levels of evaporation. Because precipitation isotope ratios for modern southern California (annual range −64‰ to −43‰; Bowen and Revenaugh, 2003) are much lower than those of ocean water, we expect that La Brea terrestrial feeders should have bone collagen δ2H values lower than the −15‰ value we use as a minimum for marine feeders.

Diets of Pleistocene La Brea Raptors

Morphologic and observational data show that modern bald eagles are opportunistic piscivores and terrestrial scavengers, and our isotope data suggest that Pleistocene bald eagles had similar feeding behaviors (Figs. 2 and 3) (Hertel, 1995). Six individuals have high δ13C and δ15N values that are outside the range of local terrestrial values and can most...
likely be explained by marine food sources, though the presence of bald eagles in the tar pits indicates they consumed terrestrial species to some extent. The other two bald eagles and the golden eagles have fully terrestrial δ¹³C and δ¹⁵N values. It is difficult to determine if the terrestrial eagle isotope values reflect predation on small mammals or scavenging on megafaunal carrion. The δ²H values of the bald eagle and golden eagle that we were able to analyze are low, in agreement with our interpretation of a terrestrial diet for these individuals.

Diet of Pleistocene La Brea Condors and Vultures

The two extinct scavengers from La Brea and McKittrick, the black vulture and teratorn, both have mean δ¹³C, δ¹⁵N, and δ²H values consistent with a terrestrial diet. The black vulture has the lowest standard deviations for all three isotopes among the species analyzed, which suggests they had the least variable diet. Their δ¹⁵N values correspond to the higher (grazer) end of the range in La Brea herbivore δ¹⁵N values, indicating they were not sampling the full diversity of megafauna at the tar pits. This result conflicts with the results of a morphological analysis (Hertel, 1994), which suggested that Pleistocene black vultures were generalized scavengers similar to condors. The specialized diet of La Brea black vultures may have been driven by competition with other species within the diverse vulture guild. Black vulture δ²H values have a maximum of ~31‰, confirming that terrestrial feeders in the La Brea ecosystem have relatively low δ²H values that can be used to distinguish them from marine feeders (δ²H > ~15‰).

In contrast to the black vulture, the gigantic teratorn has δ¹⁵N isotope values that correspond to a mixed diet of both browser and grazer megafauna. One individual has a δ²H value that is high enough (~15‰) to suggest a marine food source in the diet. The isotopic variability of the teratorns may reflect the dietary flexibility that is required of such a large terrestrial scavenger. Based on morphology alone the teratorn has been classified both as a small mammal predator (Campbell and Tonni, 1981) and as a piscivore (Hertel, 1995). Although our isotopic data set cannot fully resolve this discrepancy in dietary interpretations, it is clear that teratorns were not obligate piscivores.

The wide ranges in California condor δ¹³C, δ¹⁵N, and δ²H values reflect a diet that included both terrestrial and marine food sources (Table 1). Dietary mixing models using carbon and nitrogen isotope results for the La Brea condors with terrestrial and marine dietary end members were presented in Chamberlain et al. (2005). In summary, when compared to terrestrial (horse and bison) and marine (baleen whale and pinipalled) food sources, they found that four of the condors had a diet that was >50% marine. We note that these three of these putatively marine-feeding condors have δ¹³C and δ¹⁵N values that could alternatively be explained by terrestrial diet in an arid C₄ environment. However, the δ²H data clearly divide the condors into marine and terrestrial groups, and resolve the potential ambiguities in dietary interpretations. The five condors with the highest δ¹³C and δ¹⁵N values have marine δ²H values; the remaining four condors have terrestrial δ²H values.

We obtained accelerator mass spectrometry ¹⁴C dates for eight of the La Brea California condors to examine temporal patterns in foraging behavior. The condors range in age from 30,900 to 19,030 ¹⁴C yr B.P. (Table 1). We found no correlation between ¹⁴C yr B.P. and either δ¹³C, δ¹⁵N, or δ²H value (General Linear Model; p > 0.05). The lack of a temporal pattern in the isotope data indicates that La Brea condors were feeding across the terrestrial-marine interface throughout the late Pleistocene.

CONDOR PALEOECOLOGY ACROSS NORTH AMERICA

Paleontological Context

The δ¹³C, δ¹⁵N, and δ²H values of condors from late Pleistocene sites across North America are variable and reflect continent-scale differences in climate, topography, and vegetation (Figs. 2 and 3; Appendix B [see footnote 1]). Taphonomic processes that facilitate the breakdown of collagen have left us with a limited organic record for most Pleistocene sites in southern North America. This data set may represent the only collagen stable isotope values available for late Pleistocene taxa in these regions.

The Pleistocene condors and vultures from the southwest and Florida were all found either in direct association with megafaunal fossils or near contemporaneous sites containing megafauna (Emshie, 1988; Feranec, 2004). There are published direct dates on tissues for three of the condors that range from 13,000 to 9500 ¹⁴C yr B.P. (Emshie, 1987), and here we report an age of 11,275 ± 45 ¹⁴C yr B.P. for the Shrine Cave condor.

Diet of Pleistocene Southwest and Florida Condors and Vultures

The condors and vultures from both the southwest (Grand Canyon, New Mexico, Texas) and Florida have collagen δ¹³C values that are between the collagen values expected for carnivores living in pure C₃ (~22‰) and pure C₄ (~10‰) ecosystems. They were likely scavenging in open grasslands and mixed forests of these regions. This result agrees with δ¹³C values measured in megafaunal enamel apatite from sites in the southwest and Florida, which also indicate a mix of C₃ and C₄ plants (Connin et al., 1998; Feranec, 2004; Koch et al., 2004).

TABLE 1. LA BREA CONDOR δ¹³C, δ¹⁵N, AND δ²H VALUES (‰), AND ¹⁴C AGES

<table>
<thead>
<tr>
<th>Specimen #</th>
<th>δ¹³C</th>
<th>δ¹⁵N</th>
<th>δ²H</th>
<th>Age (14C yr B.P.)</th>
<th>CAMS #</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCMP 148875</td>
<td>−19.2</td>
<td>11.7</td>
<td>−31.1</td>
<td>24,230 ± 550</td>
<td>104164</td>
</tr>
<tr>
<td>UCMP 148876</td>
<td>−15.9</td>
<td>16.3</td>
<td>−11.4</td>
<td>30,900 ± 1300</td>
<td>104165</td>
</tr>
<tr>
<td>UCMP 148777</td>
<td>−15.1</td>
<td>14.2</td>
<td>−15.6</td>
<td>19,030 ± 280</td>
<td>104166</td>
</tr>
<tr>
<td>UCMP 148678</td>
<td>−13.5</td>
<td>13.5</td>
<td>0.2</td>
<td>22,710 ± 450</td>
<td>104167</td>
</tr>
<tr>
<td>UCMP 148679</td>
<td>−19.8</td>
<td>11.6</td>
<td>−73.0</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>UCMP 148880</td>
<td>−18.7</td>
<td>12.0</td>
<td>−46.2</td>
<td>21,260 ± 370</td>
<td>104168</td>
</tr>
<tr>
<td>UCMP 148881</td>
<td>−17.7</td>
<td>14.2</td>
<td>−5.8</td>
<td>30,700 ± 1300</td>
<td>104169</td>
</tr>
<tr>
<td>UCMP 148884*</td>
<td>−13.4</td>
<td>13.3</td>
<td>−2.1</td>
<td>31,000 ± 1300</td>
<td>104170</td>
</tr>
<tr>
<td>UCMP 148885</td>
<td>−18.4</td>
<td>12.6</td>
<td>−27.1</td>
<td>24,900 ± 600</td>
<td>104171</td>
</tr>
</tbody>
</table>

*—Analyzed as 4 replicates for δ²H. The standard deviation for these replicates was >5‰ (range = −14.2 to 11.1)
The δ15N values of condors from the south-west are more enriched in 15N than those from Florida condors, which we hypothesize is the result of arid (drier) versus humid (moister) climate conditions. In modern ecosystems mean annual precipitation and the δ18O values of C3 vegetation have a strong inverse relationship due to the preferential loss of 15N-depleted nitrogen-bearing compounds in the soils of drier environments (Swap et al., 2004). Other studies of modern and fossil mammals have found 15N-enriched values in animal collagen from arid regions (Sealy et al., 1987; Gröcke et al., 1997; Stevens and Hedges, 2004). Two condors and two vultures from the southwest have elevated δ15N values similar to those of marine-feeding condors at La Brea. Yet these individuals (two analyzed) do not have marine δ18H values, which implies that their δ15N values reflect a xeric terrestrial environment and not a >500 km migration to the nearest marine resources at the Gulf of Mexico paleocoastline (Thompson and Schweitzer, 1996).

For two birds, the Ichetucknee River condor and a Kincaid Shelter vulture, δ18H values within the range of marine feeders (greater than ~15‰) are contrasted by δ18O and δ15N values that are clearly terrestrial. The δ15N value of the Florida condor is too low to allow for any marine dietary input, and likewise for the pure 15C δ18O value of the Texas vulture. In contrast to the La Brea birds, these animals lived in areas where precipitation δ18H values today are similar to those of ocean water (Bowen and Revenaugh, 2003) and, in combination with the effects of evaporative concentration of 18H in surface water and plants, produce δ18H values for deer bone collagen that are within the marine range (Cormie et al., 1994). The results for these two birds suggest that hydrogen isotope ratios are likely to be ambiguous indicators of diet in regions where ecosystem water resources have δ18H values that are similar to those of ocean water.

CONCLUSIONS
Our stable isotope results provide insight into the difference between modern and Pleistocene geographical distributions of condors in North America. The use of marine megafauna by California condors on the Pacific coast likely allowed these populations to survive the extinction of terrestrial megafauna. Inland condor populations, even from regions relatively close (<100 km) to the coast (e.g., northern Florida), primarily consumed terrestrial resources, and all these populations vanished along with terrestrial megafauna. This conclusion is bolstered by the extinction on the Pacific coast of other large scavengers, such as teratons and black vultures; these animals did not consume marine foods. There is no coastal upwelling of productive Atlantic and Gulf of Mexico waters offshore of Florida
to support the large numbers of marine mammals that are found along the Pacific coast. For this reason, Florida was not another coastal refuge for condors during the megafaunal extinction. Our results highlight the importance of understanding how top consumers forage across the marine-terrestrial interface, and use productive coastal zones as extinction refugia during periods of environmental or ecologic change.

ACKNOWLEDGMENTS
We thank Bruce MacFadden and Richard Hubert (Florida Museum of Natural History), Pat Holroyd (University of California Museum of Paleontology), Lyndon Murray (University of Texas at Austin), and Hannah Nevins (Beach COMBERS [Coastal Ocean Mammal and Bird Education and Research Surveys]) for facilitating this project. We thank Tom Guilderson, Seth Newsome, Patrick Wheatley, Jake Waldbauer, and the Stable Isotope Ratio Facility for Environmental Research lab (University of Utah) for assistance with sample collection and analyses. This project was supported by a Center for the Dynamics and Evolution of the Land-Sea Interface (University of California–Santa Cruz) student research grant and a Florida Museum of Natural History travel grant, both to Fox-Dobbs. Funding for condor 14C analyses was generously provided by the Center for Mass Spectrometry, Lawrence Livermore National Laboratory.

REFERENCES CITED
Bowen, G.J., and Revenaugh, J., 2003, Interpolating the 15N values of condors from the south-west 18H values within the range of marine feeders (greater than ~15‰) are contrasted by 18O and 15N values that are clearly terrestrial. The 15N value of the Florida condor is too low to allow for any marine dietary input, and likewise for the pure 15C 18O value of the Texas vulture. In contrast to the La Brea birds, these animals lived in areas where precipitation 18H values today are similar to those of ocean water (Bowen and Revenaugh, 2003) and, in combination with the effects of evaporative concentration of 18H in surface water and plants, produce 18H values for deer bone collagen that are within the marine range (Cormie et al., 1994). The results for these two birds suggest that hydrogen isotope ratios are likely to be ambiguous indicators of diet in regions where ecosystem water resources have 18H values that are similar to those of ocean water.

CONCLUSIONS
Our stable isotope results provide insight into the difference between modern and Pleistocene geographical distributions of condors in North America. The use of marine megafauna by California condors on the Pacific coast likely allowed these populations to survive the extinction of terrestrial megafauna. Inland condor populations, even from regions relatively close (<100 km) to the coast (e.g., northern Florida), primarily consumed terrestrial resources, and all these populations vanished along with terrestrial megafauna. This conclusion is bolstered by the extinction on the Pacific coast of other large scavengers, such as teratons and black vultures; these animals did not consume marine foods. There is no coastal upwelling of productive Atlantic and Gulf of Mexico waters offshore of Florida
to support the large numbers of marine mammals that are found along the Pacific coast. For this reason, Florida was not another coastal refuge for condors during the megafaunal extinction. Our results highlight the importance of understanding how top consumers forage across the marine-terrestrial interface, and use productive coastal zones as extinction refugia during periods of environmental or ecologic change.

ACKNOWLEDGMENTS
We thank Bruce MacFadden and Richard Hubert (Florida Museum of Natural History), Pat Holroyd (University of California Museum of Paleontology), Lyndon Murray (University of Texas at Austin), and Hannah Nevins (Beach COMBERS [Coastal Ocean Mammal and Bird Education and Research Surveys]) for facilitating this project. We thank Tom Guilderson, Seth Newsome, Patrick Wheatley, Jake Waldbauer, and the Stable Isotope Ratio Facility for Environmental Research lab (University of Utah) for assistance with sample collection and analyses. This project was supported by a Center for the Dynamics and Evolution of the Land-Sea Interface (University of California–Santa Cruz) student research grant and a Florida Museum of Natural History travel grant, both to Fox-Dobbs. Funding for condor 14C analyses was generously provided by the Center for Mass Spectrometry, Lawrence Livermore National Laboratory.

REFERENCES CITED

Manuscript accepted 31 March 2006
Manuscript received 31 December 2005

Printed in USA

GEOLGY, August 2006

688