CONTENTS

Preface

1 Introduction to MatLab

1.1

1.2

1.4

1.5

MatLab Basics

1.1.1 Command-Line

1.1.2 Variables

1.1.3 Matrix and Operations
M-File

1.2.1 Secripts

1.2.2 Function

1.2.3 Execution of M-File
Visualization

1.3.1 Simple Plots

1.3.2 Multiple curves in a Plot or plots
1.3.3 2D and 3D plots

1.3.4 Printing

Input/Output

1.4.1 Data Input/Output
1.4.2 Screen Output

1.43 File Input/Qutput
Control Flow

O S R

15
15

16
16
16
17
18
20
21
21
22
22
23

vii

viii

CONTENTS

1.5.1
1.5.2
153

Logical and Relational Flow
Conditional Flow
Loops

23
24
25

CHAPTER 1

INTRODUCTION TO MATLAB

During this course you will learn how to use MatLab, to design, and to perform mathemat-
ical computations. You will also get acquainted with basic programming. If you learn to
use this program well, you will find it very useful in future, since many technical or math-
ematical problems can be solved using MatLab. This text includes all material (with some
additional information) that you need to know, however, many things are treated briefly. It
is important that you spend enough time to learn the MatLab basics.

1.1 MatlLab Basics

1.1.1 Command-Line

MatLab is an interactive system; commands followed by Enter are executed immediately.

The results are, if desired, displayed on screen. However, execution of a command will

be possible if the command is typed according to the rules. Table 1.1 shows a list of

commands used to solve indicated mathematical equations (a,b, X and y are numbers).
Below you find basic information to help you starting with MatLab:

= Commands in MatLab are executed by pressing Enter or Return. The output will be

displayed on screen immediately. Try the following:

>>3+75
>> 18/4

Computational Mathematics, First edition. 1
By Daniel X. Guo Copyright © 2017 John Wiley & Sons, Inc.

2

INTRODUCTICON TO MATLAB
Mathematical notation || MatLab command
a+b a+b
a—2b a-b
a#*b a*b
= a/b
z X" b
VT sgri(x) or x ~ 0.5
|| abs(x)
T pi
4.10% 4e3 or 4%10 * 3
i iorj
3—4i 3-4%i or 3-4%j
e, e* exp(1), exp(x)
Inz, loga log(x), log10(x)
sinz,arctanz, ... sin(x), atan(x), ...

Table 1.1 Translation of mathematical notation to MatLab commands.

Bt R
Note that spaces are not important in MatLab.

The result of the last performed computation is ascribed to the variable ans, which is
an example of a MatLab built-in variable. It can be used in the next command. For
instance:

>> 14/4

ans = 3.5000

>> ans " (-6)

ans = 5.4399% — 04

5.4399¢ — 04 is a computer notation of 5.4399 = 1074, Note that ans is always over-
written by the last command.

You can also define your own variables. Look how the information is stored in the
variables a and b:

>>a=14/4
a=3.5000
>>b=a"(-6)
b =5.4399¢ — 04

When the command is followed by a semicolon °;’, the output is suppressed. Check
the difference between the following expressions:

>>3+75

>>3+7.5;

It is possible to execute more than one command at the same time; the separate comn-
mands should then be divided by commas (to display the output) or by semicolons (to
suppress the output display), e.g.:

>>> sin(pi/4), cos(pi); sin(0)

MATLAB BASICS 3

ans = 0.7071
ans=0
Note that the value of cos(pi) is not printed.

By default, MatLab displays only 5 digits. The command format long increases this
number to 15, format short reduces it to 5 again. For instance;

>> 312/56

ans = 5.5714

>> format long

>> 312/56

ans = 5.57142857142857

= MatLab is case sensitive, for example, a is written as a in MatLab; A will result then
in an error,

All text after a percent sign % until the end of a line is treated as a comment. Enter
e.g. the following:

> sin(3.14159) % this is an approximation of sin(pi)

You will notice that some examples in this text are followed by comments. They are
meant for you and you should skip them while typing those examples.

=

Previous commands can be fetched back with the T key. The command can also be
changed, the + and — keys may be used to move around in a line and edit it. In case
of a long line, Ctrl-a and Ctrl-e might be useful; they allow to move the cursor at the
beginning or the end of the line, respectively.

To recall the most recent command starting from e.g. ¢, type c at the prompt followed
by the T key. Similarly, cos followed by the 1 key will find the last command starting
from cos.

1.1.2 Variables

MatLab variables can be created by an assignment. There is also a number of built-in
variables, e.g. pi, eps or i, summarized in Table 1.2. In addition to creating variables by

Variable name Value/meaning

ans the default variable name used for storing the last result

pi 7 =3.14159. ..

eps the smallest positive number that added to 1, creates a result larger than 1
inf representation for positive infinity, e.g. 1/0

nan or NaN representation for not-a-number, e.g. 0/0

iorj i=j=+-1

nargin/nargout number of function input/output arguments used

realmin/realmax || the smallest/largest usable positive real number

Table 1.2 Built-in variables in MatLab.

assigning values to them, another possibility is to copy one variable, e.g. b into another,
e.g. a. In this way, the variable a is automatically created (if a already existed, its previous

4 INTRODUCTION TO MATLAB

value is lost):

>>b=10.5;

>>a=b;

A variable can be also created as a result of the evaluated expression:
>>a=10.5;c=2a"2 + sin(pi*a)/d;

or by loading data from text or "*.mat’ files. 1f min is the name of a function (see help
min), then a defined, e.g. as:

>>b=5c¢c=7;

>> a=min (b,c); % create a as the minimum of b and ¢

will call that function, with the values b and c as parameters. The result of this function
(its return value) will be written (assigned) into a. So, variables can be created as results of
the execution of built-in or user-defined functions, Important: do not use variable names
which are defined as function names (for instance mean or error)! If you are going to use
a suspicious variable name, use help <name> to find out if the function already exists.

1.1.3 Matrix and Operations

The basic element of MatLab is a matrix (or an array). Special cases are:
* al x l-matrix: a scalar or a single number;
* amatrix existing only of one row or one column: a vector.

Note that MatLab may behave differently depending on the input, whether it is a number,
a vector or a 2D matrix.

1.1.3.1 Vectors Row vectors are lists of numbers separated either by commas or by
spaces. They are examples of simple arrays. First element has index 1. The number of
entries is known as the length of the vector (the command length exists as well). Their
entities are referred to as elements or components. The entries must be enclosed in [1:
>>v=[-1sin(3) 7]

v =-1.00000.1411 7.0000

>> length(v)

ans =3

A number of operations can be done on vectors. A vector can be multiplied by a scalar,
or added/subtracted to/from another vector with the same length, or a number can be
added/subtracted to/from a vector. All these operations are carried out element-by-element.
Vectors can be also built from the already existing ones.

>>v=[-127;w=[234];

>>z=Vv+wW % an element-by-element sum
z=1511

>>vv=v+2 % add 2 to all elements of vector v
vw=149

>>t=[2%y, -w]

ans=-2414-2-3-4

Also, a particular value can be changed or displayed:
>>v(2)=-1 % change the 2nd element of v
v=-1-17

>> wi(2) % display the 2nd element of w

ans =3

MATLAB BASICS 5

1.1.3.2 Colon notation and extracting parts of a vector A colon notation is an im-
portant shortcut, used when producing row vectors (see Table 3 and help colon):

>>2:5

ans=23435

>>-2:3

ans=-2-10123

In general, first:step:last produces a vector of entities with the value first, incrementing by
the step until it reaches last:

>>0.2:0.5:24

ans = 0.2000 0.7000 1.2000 1.7000 2.2000

>>-3:3:10

ans=-30369

>> 1.5:-0.5:-0.5 % negative step is also possible

ans =

1.5000 1.0000 0.5000 0 -0.5000

Parts of vectors can be extracted by using a colon notation:

>>r=[-1:2:6,2, 3, -2] %-1:26=>-1135

r=-113523-2
>>r(3:6) % get elements of r which are on the positions from 3 to 6
ans=3523

>>r(1:2:5) % get elements of r which are on the positions 1, 3 and 5
ans=-132
>> 1(5:-1:2) % what will you get here?

1.1.3.3 Product, divisions and powers of vectors You can now compute the inner
product between two vectors x and y of the same length, 2Ty = 37, zy, in a simple

way:
>>u=[-1;3;5] % a column vector
>>v=[-1;2;7] 9% a column vector
>>u*y % you cannot multiply a column vector by a column vector

?7? Error using ==> ¥

Inner matrix dimensions must agree.

>>uky % this is the inner product

ans =42

An another way to compute the inner product is by the use of the dot product, i.e. .*,
which performs element-wise multiplication, For two vectors x and y, of the same length,

it is defined as a vector [mlyl, ToW2, - .+ TnlYn), thus, the corresponding elements of two
vectors are multiplied. For instance:
>>u.ky % this is an element-by-element multiplication
6
35
>> sum{u.*v) % this is an another way to compute the inner product
ans =42
>>z=[431]; % 7 is a row vector
>> sum(u’,*z) % this is the inner product
ans = 10
>>u'¥z’ % since z is a row vector, u'*z’ is the inner product

ans = 10

6 INTRCDUCTION TO MATLAB

You can now tabulate easily values of a function for a given list of arguments, For instance:
>>x=1:0.5:4;

>>y =sgrt(x) .* cos(x)

y =0.5403 0.0866 -0.5885 -1.2667 -1.7147 -1.7520 -1.3073

Mathematically, it is not defined how to divide one vector by another, However, in Mat-
Lab, the operator ./ is defined to perform an element-by-element division. It is, therefore,
defined for vectors of the same size and type:

>>x=2:2:10

x=246810

>>y=6:10

y=678910

>> xly

ans = 0.3333 0.5714 0.7500 0.8889 1.0000

>>z=-1.3

z=-10123

>> Xz % division 4/0, resulting in Inf

Warning: Divide by zero.

ans = -2.0000 Inf 6.0000 4.0000 3.3333

>>z.lz % division 0/0, resulting in NaN

Warning: Divide by zero.

ans=1NaN 111

The operator ./ can be also used to divide a scalar by a vector:

>> x=1:5; 2/x % this is not possible

77? Error using ==>/

Matrix dimensions must agree.

>> 2./x % but this is!

ans = 2.0000 1.0000 0.6667 0.5000 0.4000

' Command H Result

AL Ay
A j-th column of A
Adi,) i-th row of A

A(klm:n) || (I-k +1) % (n -m+ 1) matrix with elements A;; withk <i <l m<j<n

v(i;j)’ *vector-part’ (vi, ¥it1,...,v;) of vector v

Table 1.3 Manipulation of (groups of) matrix elements.

1.1.3.4 Matrices Row and column vectors are special types of matrices. Ann x k
matrix is a rectangular array of numbers having n rows and k columns. Defining a matrix
in MatLab is similar to defining a vector. The generalization is straightforward, if you see
that a matrix consists of row vectors (or column vectors). Commas or spaces are used to
separate elements in a row, and semicolons are used to separate individual rows.

= Define a matrix:

MATLAB BASICS 7

1 2 3
For example, the matrix A=|4 5 6| is defined as:
7T 8 9
>>A=[123456;789] % row by row input

A=

~] = =
oo 1
o o W

Command || Result

C=A+B sum of two matrices

C=A-B subtraction of two matrices

C=A*B || multiplication of two matrices

C=A *B || "element-by-element’ multiplication (A and B are of equal size)

C=A"k power of a matrix (k 2 Z; can also be used for Al)

C=Ak *element-by-element’ power of a matrix
C=A the transposed of a matrix; AT
C=A./B >element-by-element’ division (A and B are of equal size)

X=A\B || finds the solution in the least squares sense lo the system AX =B

X=B/A finds the solution of XA = B, analogous to the previous command

Table 1.4 Frequently used matrix operations.

Another examples are, for instance:
>> A2 =[1:4; -1:2:5]

A2 =

1 2 3 4

-1 1 3 5
>>A3= | 1 3

~4 7]

A=

1 3

-4 7

From that point of view, a row vectorisa 1 x k matrix and a column vector is an n
x 1 matrix. Transposing a vector changes it from a row to a column or the other way
around. This idea can be extended to a matrix, where transposing interchanges rows
with the corresponding columns, as in the example:

>> A2
1 2 3 4
-1 1 3 5
>> A2 % transpose of A2

ans =

8 INTRODUCTION TO MATLAB

| Command H Result

n =rank(A) n is the rank of matrix A

X = det(A) X i8 the determinant of matrix A

X = size(A) X is a row-vector with 2 elements: the number of rows and columns of A

X = trace(A) x is the trace (sum of diagonal elements) of matrix A

X = norm(v) x is the Euclidean length of vector v

C =inv(A) C becomes the inverse of A

C = null(A) C is an orthonormal basis for the null space of A obtained from
the singular value decomposition

C =orth(A) C is an orthonormal basis for the range of A

C =rref(A) C is the reduced row echelon form of A

L =eig(A) L is a vector containing the eigenvalues of a square matrix A

[X,D] = eig(A) produces a diagonal matrix D of eigenvalues and a full matrix X
whose columns are the corresponding eigenvectors of A

S =svd(A) S is a vector containing the singular values of A

[U,S,V] =svd(A)

S is a diagonal matrix with nonnegative diagonal elements in decreasing
order; columns of U and V are the accompanying singular vectors

x = linspace(a,b,n)

generates a vector x of n equally spaced points between a and b

x = logspace(a,b,n)

generales a vector x starting at 10a and ended at 10b containing n values

A =eye(n)

Alisann X nidentity matrix

A =zeros(n,m)

Ais an n X m matrix with zeros (default m =n)

A = ones(n,m)

Ais an n X m matrix with ones (default m = n)

A = diag(v) gives a diagonal matrix with the elements v, vz, ..., v, on the diagonal
X = tril(A) X is lower triangular part of A
X =triu(A) X is upper triangular part of A

A =rand(n,m)

A is an n X m matrix with elements uniformly distributed between 0 & 1

A = randn(n,m)

ditto - with elements standard normal distributed

v = max(A) v is a vector with the maximum value of the elements in each column
of A or v is the maximum of all elements if A is a vector
v = min(A) ditto - with minimum
v = sum(A) ditto - with sum
Table 1.5 Frequently used matrix functions.
1 -1
2 1
3 3
4 5
> size(A2) % returns the size (dimensions) of A2: 2 rows, 4 columns
ans =

24

MATLAB BASICS 9

> size(A2’)
ans =
42

Special matrices:

There is a number of built-in matrices of size specified by the user (see Table 4). A
few examples are given below:
>>E=[] % an empty matrix of 0-by-0 elements!
B =
(]
>>> size(E)
ans =
00
>>1=eye(3); % the 3-by-3 identity matrix
I =

1
0
0

o = O
== O O

>>x=[2;-
ans =
2
-1
7
>>r=[13-2); R =diag(r) % create a diagonal matrix with r on the diagonal
R=

3 71 I*x % [is such that for any 3-by-1 x holds [*x =x

0
0
-2
>>A=[123;456;789];
>> diag(A) % extracts the diagonal entries of A
ans =

1
5

9
>> B =ones(3,2)
B=

1
0
0

o W O

= zeros (size(C’)) d% a matrix of all zeros of the size given by C’

000

000
>> D =rand(2,3) % a matrix of random numbers; you will get a different one!
D =

10 INTRODUCTION TO MATLAB

0.0227 0.9101 0.9222

0.0299 0.0640 0.3309
>> v = linspace(1,2,4} % a vector is also an example of a matrix
V=

1.0000 1.3333 1.6667 2.0000

Building matrices and extracting parts of matrices:

It is often needed to build a larger matrix from the smaller ones:
>>x=[4-1],y=[13]

X =
4
-1
y =
-1 3
>>X=[xy’] % X consists of the columns x and y’
X =
4 -1
-1 3
>>T=[-134,456);t=1:3;
>>T=[T;t] % add to T a new row, namely the row vector t
T=
-1 3 4
4 5 6
1 2 3
>>G=[1545;02]; % G is a matrix of the 3-by-2 size; check size(G)
>>T2=[TG] % concatenate two matrices
T2=
-1 3 4 1 5
4 5 6 4 5
1 2 3 0 2
>> T3 =[T; G ones(3,1)] % G is 3-by-2, T is 3-by-3
T3 =
-1 3 4
4 5 6
1 2 3
1 5 1
4 5 1
0 21
>>T3=[T;,G’); % this is also possible; what do you get here?
>> [G’ diag(5:6); ones(3,2) T] % you can concatenate many matrices

ans =

MATLAB BASICS 1

1 4 0 5 0
5 5 2 0 6
11 -1 3 4
11 4 5 6
11 1 2x3

A part can be extract from a matrix in a similar way as from a vector, Each element
in the matrix is indexed by a row and a column to which it belongs. Mathematically,
the element from the i-th row and the j-th column of the maltrix A is denoted by Aij ;
Matlab provides the A(i,j) notation.

>> A =[1:3;4:6;7.9]

A=

i B

2
5
8

P o o

>> A(l,2),
ans =
2
ans =
6
ans =
7
>> A(4.3) % this is not possible: A is a 3-by-3 matrix!
77? Index exceeds matrix dimensions.
>> A(2.3) = A2,3) + 2*A(1, 1) % change the value of A(2,3)
A=

(2,3), AG,1)

1 2 3

4 5 8

7 8 9
It is easy to extend a matrix automatically. For the matrix A it can be done e.g. as
follows:
>>A(5,2)=5 % assign 5 to the position (5,2); the uninitialized
A= % elements become zeros

1 2 3

4 5 8

7 8 9

000

0 5 0

If needed, the other zero elements of the matrix A can be also de

ned, by e.g.:

>>AM4,)=[2,1,2]; % assign vector [2, 1, 2] to the 4th row of A
>> A(5,[1,3]) = [4, 4]; % assign: A(5,1)=4 and A(5,3)=4

>> A % how does the matrix A look like now?

Different parts of the matrix A can be now extracted:

>> A(3,) 9% extract the 3rd row of A

ans =

12

INTRODUCTION TO MATLAB

789
>> A(L2) % extract the 2nd column of A
ans =

— 00 Uh b2

w

>> A(l:2,) % extract the rows 1st and 2nd of A

ans =
1 2 3

4 5 8
>> A([2,5],1:2) % extract a part of A

ans =
4 5

4 5
As you have seen in the examples above, it is possible to manipulate (groups of)
matrix-elements. The commands are shortly explained in Table 3. The concept of an
empty matrix [] is also very useful in Matlab. For instance, a few columns or rows
can be removed from a matrix by assigning an empty matrix to it. Try for example:
>>C=[12345678&1111];
>>D=C;D(;,2)=]] % now a copy of C is in D; remove the 2nd column of D
>>C([1,3],)) =] % remove the rows 1 and 3 from C

Operations on matrices

Table 4 shows some frequently used matrix operations and functions. The important
ones are dot operations on matrices, matrix-vector products and matrix-matrix prod-
ucts. In the class of the dot operations, there are dot product, dot division and dot
power. Those operations work as for vectors: they address matrices in the element-
by-element way, therefore they can be performed on matrices of the same sizes. They
also allow for scalar-matrix operations. For the dot product or division, corresponding
elements are multiplied together or divided one by another. A few examples of basic
operations are provided below:

>>B=[1-13;407]

B =

1 -1 3

4 0 7
>>B2=[12;51;56];
>>B=B+B2’ % add two matrices; why B2’ is needed instead of B2?
B =

2 4 8

6 1 13
>> B-2 % subtract 2 from all elements of B
ans =

0 2 6

4 -1 11

>>ans = B./4 % divide all elements of the matrix B by 4
ans =

MATLAB BASICS 13

0.5000 1.0000 2.0000

1.5000 0.2500 3.2500
>>4/B % this is not possible
777 Error using ==> /
Matrix dimensions must agree.
>>4./B % this is possible; equivalent to: 4.*ones(size(B)) /B
ans =
2.0000 1.0000 0.5000
0.6667 4.0000 0.3077
>>C=[1-1470-1];
>>B.*C % multiply element-by-element

ans =
2 —4 32
42 0 -13
>>ans."3-2 % do for all elements: raise to the power 3 and subtract 2
ans =
6 —66 32766
74086 -2 —2199
>>ans./B."2 % element-by-element division
ans =

0.7500 —1.0312 63.9961

342.9907 -2.0000 —1.0009
>>r=[13-2];r*B2 % this is a legal operation: ris a 1-by-3 mafrix and B2 is
ans = % 3-by-2 matrix; B2 * r is an illegal operation
6-7
Concerning the matrix-vector and matrix-matrix products, two things should be re-
minded. First, an n x k matrix A (having n rows and k columns) can be multiply by a
k > 1 (column) vector x, resulting in a column n x 1 vector y, i.e.: Ax =y such that
Y = E:ﬂ Aipy. Multiplying a I x n (row) vector x by a matrix A, results in a 1
x k (row) vector y. Secondly, an n x k matrix A can be multiply by a matrix B, only
if B has k rows, i.e. B is k x m (m is arbitrary). As a result, you get n x m matrix C,
such that AB = C, where C;; = Z;ﬁ:l AipBpj.
>>b=[13-2];
>>B=[1-13;407]
B=

1 -1 3

4 07
>>b*B % not possible: b is 1-by-3 and B is 2-by-3
777 Error using ==, *
Inner matrix dimensions must agree.

>>b*B’ % this is possible: a row vector multiplied by a matrix
ans =
-8-10
>> B’ *ones(2,1)
ans =

5
-1

14 INTRODUGTION TO MATLAB

10
>>C=[31.1-3];
>>C*B
ans =
7T -3 16
-11 -1 -18
>>C."3 % this is element-by-element power
ans =
27 1 s i g ;
. 271127 >>C"3 % this is equivalent to C*C*C
ans =
30 10
10 -30
>> ones(3,4)./4 * diag(1:4)
ans =
0.2500 0.5000 0.7500 1.0000
0.2500 0.5000 0.7500 1.0000
0.2500 0.5000 0.7500 1.0000
1.2 M-File
1.2.1 Secripts

MatLab commands can be entered at the MatLab prompt. When a problem is more com-
plicated this becomes inefficient. A solution is using script m-files. They are useful when
the number of commands increases or when you want to change values of some variables
and re-evaluate them quickly. Formally, a script is an external file that contains a sequence
of MatLab commands (statements). However, it is not a function, since there are no in-
put/output parameters and the script variables remain in the workspace. So, when you run
ascript, the commands in it are executed as if they have been entered through the keyboard.

1.2.2 Function

Functions m-files are true subprograms, since they take input arguments and/or return out-
put parameters. They can call other functions, as well. Variables defined and used inside
a function, different from the input/output arguments, are invisible to other functions and
the command environment. The general syntax of a function is presented below:

function [outputArgs] = function_name (inputArgs)

outputArgs are enclosed in []:

= a comma-separated list of variable names;

is optional when only one argument is present;
= functions without outputArgs are legal.
inputArgs are enclosed in ():

= a comma-separated list of variable names;

M-FILE 15

= functions without inputArgs are legal.

MatLab provides a structure for creating your own functions. The first line of the file
should be a definition of a new function (also called a header). After that, a continuous
sequence of comment lines should appear. Their goal is to explain what the function does,
especially when this is not trivial. Not only a general description, but also the expected
input parameters, returned output parameters and synopsis should appear there. The com-
ment lines (counted up to the first non-comment line) are important since they are displayed
in response to the help command. Finally, the remainder of the function is called the body.
Function m-files terminate execution and return when they reached the end of the file or, al-
ternatively, when the command return is encountered. As an example, the function average
is defined as follows:

function avr = average (x)
%AVERAGE computes the average value of a vector x
% and returns it in avr

% Notes: an example of a function
n = length(x);
avr = sum(x)/n;

0~ O P W D —

return;

Marks: the first line must be the function definition. The second and third lines are
explanation of file for help of average. A blank line within the comment is used as a break
point of help. Notes information will NOT appear when you ask for help.

Important: The name of the function and the name of the file stored on disk should be
identical. In our case, the function should be stored in a file called average.m.

1.2.3 Execution of M-File

For a script of M-file, just simply use the name of the file to execute each command in the
file sequently.

However, for a function of M-file, all input variables are needed to define first. You can
define them first, or you can use the command line to specify each variable.

| Symbol l Color Symbol | Line style
r red w0 point, circle
g green * star
b blue X, + x-mark, plus
y yellow - solid line
m magenta -- dash line
c cyan H dot line
k black - dash-dot line

Table 1.6 Plot colors and styles.

16 INTRODUCTION TO MATLAB

1.3 Visualization

MatLab can be used Lo visualize the results of an experiment. Therefore, you should define
variables, each of them containing all values of one parameter to plot,

1.3.1 Simple Plots

With the command plot, a graphical display can be made. For a vector y, plot(y) draws the
points [1, y(1)1, [2, ¥(2)], ..., [n, y(n)] and connects them with a straight line. plot(x,y)
does the same for the points [x(1), y(1)], [x(2), ¥(2)]. ..., [x(n), y(n)]. Note that x and
y have to be both either row or column vectors of the same length (i.e. the number of
elements). The commands loglog, semilogx and semilogy are similar to plot, except that
they use either one or two logarithmic axes.

Type the following commands after predicting the result:

>>x=0:10;
i PR & % this is the same asy = [1 24 8 16 32 64 128 256 512 1024]
> plot(x,y) % to get a graphic representation

>> semilogy(x,y) % to make the y-axis logarithmic

As you can see, the same figure is used for both plot commands. The previous function
is removed as soon as the next is displayed. The command figure gives you an extra
figure. Repeat the previous commands, but generate a new figure before plotting the second
function, so that you can see both functions in separate windows. You can also switch back
to a figure using figure(n), where n is its number.

To plot a graph of a function, it is important to sample the function sufficiently well.
Compare the following examples:
>>n=35;
>>x=0:1/n:3; % coarse sampling
>> y = sin(5*x);
>> plot(x.y)

>>n=25
>>x=0:1/n:3; % good sampling
>> y = sin(5%x);
>> plot{x,y}
The solid line is used by plot by default. It is possible to change the style and the color,
e.g.:
>> X =0:0.4:3; y = sin(5*x);
>> plot(x,y,’r--")
produces the dashed red line. The third argument of plot specifies the color (optional) and
the line style. Table 1.6 shows a few possibilities, help plot shows all. To add a title, grid
and to label the axes, one uses:
>> title(’Function y = sin(5%x)’);
>> xlabel(’x-axis’):
>> ylabel(’y-axis’);
>> grid on % remove grid by calling grid off

VISUALIZATION 17

Command Result
grid on/off adds a grid to the plot at the tick marks or removes it
axis([xmin xmax ymin ymax]) | sets the minimum and maximum values of the axes
box off/on removes the axes box or shows it
xlabel("text’) plots the label text on the x axis
ylabel("text’) plots the label text on the y axis
title("text’) plots a title above the graph
text(x,y, text’) adds text at the point (x,y)
gtext('text’) adds text at a manually (with a mouse) indicated point
legend("funl’; fun2’) plots a legend box (move it with your mouse) to name your functions
legend off deletes the legend box
clf clear the current figure
subplot create a subplot in the current gure

Table 1.7 Plot-manipulations,

1.3.2 Multiple curves in a Plot or plots

There are different ways to draw several functions in the same figure. The first one is with
the command hold on. After this command, all functions will be plotted in the same figure
until the command hold off is used. When a number of functions is plotted in a figure, it is
useful to use different symbols and colors. An example is:

>>x1=1:.1:3.1; yl =sin(x1),

>> plot(x1,y1,'md");

>> x2=1:3:3.1; y2 = sin(-x2+pi/3);

>> hold on

>> plot(x2,y2,'k*-")

>> plot(x1,y1,m-")

>> hold off

A second method to display a few functions in one figure is to plot several functions at
the same time. The next commands will produce the same output as the commands in the
previous example:

>>x1 =1:.1:3.1; y1 = sin(x1);

>>x2=1:3:3.1; y2 = sin(-x2+pi/3);

>>plot(x1, yl1,)md’, x2, y2, 'k*-’, x1, yI, 'm-")

To make the axes better fitting the curves, perform;

>> axis([1,3.1,-1,1])

The same can be achieved by axis tight. It might be also useful to exercise with axis options
(see help), e.g. axis on/off, axis equal, axis image or axis normal. A descriptive legend can
be included with the command legend, e.g.:

>> legend (sin(x)’, sin(-x-+pi/3)’);

It is also possible to produce a few subplots in one figure window. With the command
subplot, the window can be horizontally and vertically divided into p x r subfigures, which
are counted from 1 to pr, row-wise, starting from the top left. The commands: plot, title,
grid etc work only in the current subfigure.

>>x=1:.1:4;

18 INTRODUCTION TO MATLAB

>> yl =sin(3*x),

>> y2 = cos(5*x);

>> y3 = sin(3*x).*cos(5%x);

>> subplot(1,3,1); plot(x,y1,’m-"); title(’sin(3*x)")

>> subplot(1,3,2); plot(x,y2,'g-"); title(’cos(5#x))

>> subplot(1,3,3); plot(x,y3,’k-"); title(’sin(3*x) * cos(5%x)")

1.3.3 2D and 3D plots

Some commands similar to plot, loglog, semilogx and semilogy were mentioned. There
are, however, more ways to display data. MatLab has a number of functions designed for
plotting specialized 2D graphs, e.g.: fill, polar, bar, barh, pie, hist, errorbar or stem. In the
example below, fill is used to create a polygon:
>>N=5k=-N:N;
>> x = sin(k*pi/N);
>> y = cos(k*pi/N); % x and y - vertices of the polygon to be filled
>> fill(x,y,’g")
>> axis square
>> text(-0.45,0,’T am a green polygon’)
To get an impression of other visualizations, type the following commands and describe
the result (note that the command figure creates a new figure window):
>> figure % bar plot of a bell shaped curve
>>x=-2.9:02:2.9;
>> bar(x,exp{-x.*x));
>> figure % stairstep plot of a sine wave
>>x=0:0.25:10;
>> stairs(x,sin(x));
>> figure % errorbar plot
>> x=-2:0.1:2;
>> y =erf(x); % error function; check help if you are interested
>> e =rand(size(x)) / 10;
>> errorbar (x,y,e);
>> figure
>> r=rand(5,3);
>> subplot(1,2,1); bar(r, grouped’) 90 bar plot
>> subplot(1,2,2); bar(r.’stacked")
>> figure
>> x = randn(200,1); % normally distributed random numbers
>> hist(x,13) % histogram with 15 bins

The command plot3 to plot lines in 3D is equivalent to the command plot in 2D, The
format is the same as for plot, it is, however, extended by an extra coordinate. An example
is plotting the curve r defined parametrically as r(t) = [t sin(t), t cos(t); t] over the interval
[=107, 107]).
>> t = linspace(-10*pi, 10*pi,200);
>> plot3(t.*sin(t), t.*cos(t), t, 'md-"}); % plot the curve in magenta
>> title(’Curve r(t) = [t sin(t), t cos(t), t]');
>> xlabel(’x-axis’); ylabel(’y-axis’); zlabel(’z-axis”);
>> grid

Exercise:

VISUALIZATION 19

Make a 3D smooth plot of the curve defined parametrically as: [x(t), y(0), z(t)] = [sin(t),
cos(t), sin2(t)] for £ = [0, 2n]. Plot the curve in green, with the points marked by circles.
Add a title, description of axes and the grid. You can rotate the image by clicking Tools at
the Figure window and choosing the Rotate 3D option or by typing rotate3D at the prompt.
Then by clicking at the image and dragging your mouse you can rotate the axes, Exercise
with this option.

MatlLab provides a number of commands to plot 3D data. A surface is defined by a
function f(x, y), where for each pair of (x, y), the height z is computed as z = f(x, y). To
plot a surface, a rectangular domain of the (x; y)-plane should be sampled. The mesh (or
grid) is constructed by the use of the command meshgrid as follows:
>> [X, Y] =meshgrid (-1:.5:1, 0:.5:2)

X=
—1.0000 —-0.5000 0 0.5000 1.0000
—1.0000 -0.5000 0 0.5000 1.0000
—1.0000 —-0.5000 0 0.5000 1.0000
—1.0000 —0.5000 0 0.5000 1.0000
—1.0000 —0.5000 0 0.5000 1.0000

Y=

0 0 0 0 0

0.5000 0.5000 0.5000 0.5000 0.5000
1.0000 1.0000 1.0000 1.0000 1.0000
1.5000 1.5000 1.5000 1.5000 1.5000

2.0000 2.0000 2.0000 2.0000 2.0000

The domain [-1, 1] x [0, 2] is now sampled with 0:5 in both directions and it is described
by points [X(i, j), Y (i, j)]. To plot a smooth surface, the chosen domain should be sampled
in a more dense way. To plot a surface, the command mesh or surf can be used:
>> [X,Y] = meshgrid(-1:.05:1, 0:.05:2);
>> Z = s5in(5%X) .* cos(2*Y);
>> mesh(X,Y,Z2);
>> title ("Function z = sin(5x) * cos(2y)")
You can also try waterfall instead of mesh.

The MatLab function peaks is a function of two variables, obtained by translating and
scaling Gaussian distributions. Perform, for instance:
>> [X,Y,Z] = peaks; %0 create values for plotting the function
>> surf(X,Y,7); % plot the surface
>> figure
>> contour (X,Y,Z2,30); % draw the contour lines in 2D
>> colorbar % adds a bar with colors corresponding to the z-axis
>> title("2D-contour of PEAKS”);
>> figure
>> contour3(X,Y,Z,30); % draw the contour lines in 3D
>> title(’3D-contour of PEAKS);
>> peolor(X,Y,Z); % z-values are mapped to the colors and presented as

% a 'checkboard’ plot; similar to contour

20 INTRODUGTION TO MATLAB

1.3.4 Printing

Before printing a figure, you might want to add some information, such as a title, or change
somewhat in the lay-out. Table 1.7 shows some of the commands that can be used.

Example:

Plot the functions y1 = sin(4x), y2 =x cos(x}, y3 = (z +)" 'z forx =1: 0:25:
10; and a single point (x, y) = (4, 5) in one figure. Use different colors and styles, Add a
legend, labels for both axes and a title. Add also a text to the single point saying: 'single
point’. Change the minimum and maximum values of the axes such that one can look at
the function y3 in more detail.

When you like the displayed figure, you can print it to paper. The easiest way is to click
on File in the menu-bar and to choose Print. If you click OK in the print window, your
figure will be sent Lo the printer indicated there. There exists also a print command, which
can be used to send a ligure to a printer or output it to a file, You can optionally specify a
print device (i.e. an output format such as #iff or postscripr) and options that control various
characteristics of the printed lile (i.e., which Figure to print etc). You can also print to a
file if you specily the file name. II' you do nol provide an extension, prinl adds one. Since
they are many parameters they will not be explained here (check help print to learn more).
Instead, try to understand the examples:
>> print -dwinc % print the current Figure to the current printer in color
>> print -f1 -deps myfile.eps % print Figure no.1 to the file myfile.eps in black
>>> print -fT -depsc mylilec.eps % print Figure no.1 to the file myfilec.eps in color
>> print ~dtiff mylilel.tlt % print the current Figure to the file myflel titt
>>> print -dpsc myfilelc.ps % print the current Figure to the file myfilel.ps in color
>> print -2 -djpeg myfile2 % print Figure no.2 to the file myfile2.jpg

1.4 Input/Output

1.4.1 Data Input/Output

The easiest way to save or load MatLab variables is by using (clicking) the File menu-
bar, and then selecting the Save Workspace as... or Load Workspace... items respectively.
Also MatLab commands exist which save data to files and which load data from files. The
command save allows for saving your workspace variables either into a binary file or an
ASCII file (check Preliminaries on binary and ASCII files). Binary files automatically get
the *.mat’ extension, which is not true for ASCII files. However, it is recommended to add
a ’.txt’ or .dat extension. :

Learn how to use the save command by exercising:

>> 51 = sin(pi/4);

>> cl = cos(pi/4); c2 = cos(pif2);

>> str = "hello world’; % this is a string

>>> save % saves all variables in binary format to matlab.mat

>> save data % saves all variables in binary format to data.mat

>> save numdata s, cl % saves numeric variables sI and c1 to numdata.mat
>> save strdata str % saves a string variable str to strdata.mat

>> save allcos.dat c* -ascii % saves cl,c2 in 8-digit ascii format to allcos.dat

INPUT/OUTPUT 21

The load command allows for loading variables into the workspace. It uses the same syntax
as save. Try to load variables from the created files. Before each load command, clear the
workspace and after loading check which variables are present in the workspace (use who).

>> load % loads all variables from the file matlab.mat
>> load data sl cl % loads only specified variables from the file data.mat
>> load str data % loads all variables from the file strdata.mat

It is also possible to read ASCII files that contain rows of space separated values. Such a
file may contain comments that begin with a percent character. The resulting data is placed
into a variable with the same name as the ASCII file (without the extension). Check, for
example:

>> load allcos.dat % loads data from allcos.dat into variable allcos
>> who % lists variables present in the workspace now

1.4.2 Screen Output

The fprintf command converts data 1o character strings and displays it on screen or writes
it1o a file. The general syntax is:

fprintf (fid,format,a....)

Consider the following example:
>>x=0:0.1:1;

>>y = [x; exp(x)];

>> fid = fopen ("exptab.txt’,'w’);

>> lprintf(fid, "Exponential function\n’);
>> fprintf(fid, '%6.2f %12.8\n",y);

>> felose(fid):

1.4.3 File Input/Output

MatLab file input and output (I/O) functions read and write arbitrary binary and formatted
text files. This enables you to read data collected in other formats and to save data for
other programs, as well. Before reading or writing a file you must open it with the fopen
command:
>> fid = fopen (file_name, permission);
The permission string specifies the type of access you want to have:

'r’ - for reading only

‘w’ - for writing only

’a’ - for appending only

'r+’ - both for reading and writing
Here is an example:
>> fid = fopen ("results.txt’, w’) % tries to open the file results.txt for writing
The fopen statement returns an integer file identifier, which is a handle to the file (used
later for addressing and accessing your file). When fopen fails (e.g. by trying to open a
non-existing file), the file identifier becomes -1. It is also possible to get an error message,
which is returned as the second optional output argument. Tt is a good habit to test the file

22 INTRODUCTION TO MATLAB

identifier each time when you cpen a file, especially for reading. Below, the example is
given, when the user provides a string until it is a name of a readable file:

fid=0;
while fid < 1
fname = input (*Open file: ’, ’s’);
[fid, message] = fopen (fname, 'r’);
if (fid==-1)
disp (message);
end
end

When you finish working on a file, use fclose to close it up. MatLab automatically closes
all open files when you exit it. However, you should close your file when you finished
using it:

fid = fopen (‘results.txt’, "w’);

felose(fid);

1.5 Control Flow

A control ow structure is a block of commands that allows conditional code execution and
making loops.

1.5.1 Logical and Relational Flow

To use control flow commands, it is necessary to perform operations that result in logical
values: TRUE or FALSE. In MatLab the result of a logical operation is 1 if it is true and
Oif it is false. Table 1.8 shows the relational and logical operations. Another way to get to
know more about them is to type help relop. The relational operators <, <=, >, ===
and ~= can be used to compare two arrays of the same size or an array to a scalar. The
logical operators &, | and allow for the logical combination or negation of relational
operators. In addition, three functions are also available: xor, any and all (use help to find
out more).

[Command Result

a=(b>c) ais 1ifb is larger than ¢. Similar are: <, >= and <=

a=(b==c) | aislifbisequaltoc

a=(b~=c) || ais | ifbisnotequalc

a=~b logical complement: ais 1 ifbis 0
a=(b&c) logical AND: ais | if b=TRUE AND ¢ = TRUE
a=(b|c) logical OR: ais 1 if b= TRUE OR ¢ = TRUE

Table 1.8 Relational and logical operations.

Important: The logical & and — have the equal precedence in MatLab, which means
that those operators associate from left to right. A common situation is;

CONTROL FLOW 23

>>b=10:
>>1[b>0&0
ans =

0
>>(1|b>0)&0
ans =

0
>>1|(b>0&0)
ans =

1
This shows that you should always use brackets to indicate in which way the operators
should be evaluated.

1.5.2 Conditional Flow

Selection control structures, if-blocks, are used to decide which instruction to execute next
depending whether expression is TRUE or not. The general description is given below. In
the examples below the command disp is frequently used. This command displays on the
screen the text between the quotes.

= if... end

Syntax Example
if logical_expression if (a>0)
statement1 b=aq;
statement2 disp ("a is positive’);
end
end

= if... else... end

Syntax Example

if logical_expression if (temperature > 100)
block of statements disp ("Above boiling.");
evalnated if TRUE tochigh = 1;

else else
block of statements disp ('Temperature is OK.");
evaluated if FALSE toohigh = 0;

end end

Another selection structure is switch, which switches between several cases depending on
an expression, which is either a scalar or a string. The statements following the first case
where the expression matches the choice are executed. This construction can be very handy
to avoid long if ... elseif ... else ...end constructions.

24 INTRODUCTION TO MATLAB

block of commands
end

Syntax Example
switch expression method = 2;
case choicel switch method
block of commands| case {1, 2}
case {choice2a, choice2b, ...} disp(’Method is linear.’);
bleck of commands2 case 3
disp(’Method is cubic.’);
otherwise case 4

disp('Methed is nearest.’);
otherwise
disp(’Unknown method.’);
end

1.5.3 Loops

Iteration control structures, loops, are used to repeat a block of statements until some con-
dition is met. Two types of loops exist:

= the for Toop that repeats a group of statements a fixed number of times; You can

Syntax

Example

end

block of commands

for index = first;step:last

sumx = 0;
for i=1:length(x)
sumx = sumx + x(i);

end

specify any step, including a negative value. The index of the for-loop can be also a

vector.See some examples of possible variations:

Example 1 Example 2 Example 3 Example 4
fori=1:2:n for i=n:-1:3 for x=0:0.5:4 for x=[259 81]

disp(x"2); disp(sqri(x});
end end end end

= while loop, which evaluates a group of commands as long as expression is TRUE.

A simple example how to use the loop construct can be to draw graphs of f(x) = cos(n x)

forn =1,...,9 in different subplots. Execute the following script:

figure

hold on

x = linspace(0,2%pi);

for n=1:9
subplot(3,3,n);
y = cos(n*x);
plot(x,y);

CONTROL FLOW 25

Syntax Example

while expression N = 100;
statement | iter = 1
statement2 msum = 0;
statement3 while iter <= N

msum = msum + iter;
end iter = iter + 1;

end

axis tight
end

Given two vectors x and y, an example use of the loop construction is to create a ma-
trix A whose elements are defined, e.g. as A;; = z,y;. Enter the following commands to
a script:

n = length(x);
m = length(y);
fori=1:n
for j=1:m
Alij) =x@) * y()
end
end

and create A forx =[12-15-724]and y =[31-57]. Note that A is of size n-by-
m. The same problem can be solved by using the while-loop, as follows:

n = length(x);
m = length(y);

i=Lj=1 % initialize i and j
while i <=n
while j <=m
AG) = x() * y();
j=j+1; % increment j; it does not happen automatically
end
i=i+l; % increment i

end

