
Revisiting Communication Code Generation Algorithms for

Message-passing Systems∗

Clayton Ferner†

December 23, 2006

Abstract

In this paper, we investigate algorithms for generating communication code to run on distributed-

memory systems. We modify algorithms from previously published work and prove that the algorithms

produce correct code. We then extend these algorithms to incorporate the mapping of virtual processors

to physical processors and prove the correctness of this extension. This technique can reduce the number

of interprocessor messages. In the examples that we show, the total number of messages was reduced

from O(N 2) to O(P2), where N is the input size and P is the number of physical processors.

The reason that it is important to revisit communication code generation and to introduce a formal

speci�cation of the incorporation of mapping in the communication code generation is so that we can

make use of the many scheduling heuristics proposed in the literature. We need a generalized mapping

function so that we can apply di�erent mapping and scheduling heuristics proposed in the literature for

each input program, therefore improving the average performance.

Keywords�parallelizing compiler, parallel computation, distributed-memory, message-passing, map-

ping, code generation, a�ne partitioning

1 Introduction

Distributed-memory parallel computer systems, such as clusters of computers or networks of workstations

(NOWs) are becoming increasingly popular. These clusters are inexpensive computer systems capable of

high performance parallel computation. The motivation behind these clusters is that they can be built from

low cost, o�-the-shelf components, which in turn allows computer users to build their own high performance
∗International Journal of Parallel, Emergent and Distributed Systems (JPEDS), 21(5):323�344, October 2006.
†Department of Computer Science, 601 S. College Rd., University of North Carolina at Wilmington, Wilmington, NC 28403,

cferner@uncw.edu, 910-962-7129

1



parallel computer systems at low cost. Furthermore, the distributed-memory model scales better than the

shared-memory model [21]. Therefore, it is important that we continue to provide tools to assist users in

the development of software that runs e�ciently on distributed-memory parallel systems.

Toward that goal, Distributed Shared Memory (DSM) libraries, such as Treadmarks [2] or SAM [22],

allow parallel code written for a shared-memory model to be run on a distributed-memory system. The DSM

libraries have alleviated the message-passing and scheduling concerns for both the user and the compiler.

There are also compilers that provide a global addressing model to the user, such as Olden [6] and Split-

C [24]. However, the abstraction created by the DSM library or global addressing compiler is often a source

of ine�ciency [8, 13]. Cox, et al. [8] showed several examples of programs where the compiler-generated

message-passing solution outperformed the DSM solution. Thus, DSMs may create a convenient abstraction,

but they are not necessarily the most e�cient. Instead, it is important that research continue on parallelizing

compilers that can generate code that is optimized for the particular architecture upon which it will execute.

Speci�cally, it is important that the research community continue to improve the automatic generation of

message-passing code that can run on distributed-memory systems.

Amarasinghe and Lam [1] proposed algorithms to generate communication code for message-passing

systems, using both the owner-computes rule and the last write tree [1,18]. These algorithms create virtual

processors (i.e. task partitions) whose range is unbounded, which must subsequently be mapped to physical

processors whose range is bounded. In this paper, we propose an extension to their algorithms to incorporate

the mapping of virtual to physical processors for two reasons: �rst to reduce the number of interprocessor

messages and consequently improve performance, and second to generalize the mapping so that di�erent

mapping heuristics could be used by the compiler. We do not attempt to solve the partitioning problem nor

the mapping problem. Instead, we want to generalize the communication code generation so that we can

make use of various techniques to solve these problems.

Unfortunately, while implementing the extension we propose using the algorithms of Amarasinghe and

Lam, we discovered that the implementation does not always produce communication code that works

correctly. In particular, the ordering in which data are packed in a message by the sending processor is not

necessarily the same order in which the receiving processor tries to unpack the data. As a result of this

realization, we revisit the communication code generation algorithms proposed by Amarasinghe and Lam.

In particular, we have modi�ed the order of the nested loops that perform the communication to insure that

the processors will pack and unpack the data in the same order and then prove that this is correct.

By incorporating the mapping of partitions to physical processors as part of the code generation algo-

rithm, we were able to reduce the overall execution time of the example programs by reducing the total

number of messages from O(N2) to O(P 2), where N is the input size and P is the number of physical

2



processors.

The contributions of this paper are:

1. we give a formal speci�cation of the algorithms for generating message-passing code;

2. we then extend the algorithms to incorporate the mapping of partitions to physical processors, and;

3. we prove the correctness of the algorithms.

The rest of this paper is organized as follows: section 2 gives background information and de�nitions; section

3 discusses the generation of message-passing code; section 4 describes how virtual processors can be mapped

to physical processors as part of the code generation algorithms; section 5 shows some results of programs

run on a distributed-memory system using these techniques; and section 6 gives concluding remarks and

discusses future work. In addition, the appendix provides some details of the mathematics used in the

algorithms.

2 Background

Throughout this paper, we use the notation v = [v1, . . . , vn]T to represent a vector, vi to represent the ith

element of the vector v, and vi:j to represent the subvector from the ith through the jth element of v. We

also will use the notation v = [w, z]T, where w is a scalar and z is a vector to mean v = [w, z1, . . . , zn]T (i.e.

v 6= [w, [z1, . . . , zn]]T). We use the notation lbx and ubx to be the lower and upper bounds, respectively, of

a variable x.

The problem studied in this paper is the parallelization of a loop nest that modi�es elements of an array.

As is typically done, we assume that the loop nests are count-controlled loops whose lower and upper bounds

are a�ne expressions of symbolic constants (loop invariants) and outer (containing) loop indexes, such as

the example shown in Figure 1. We also assume that the array access functions are a�ne expressions of

symbolic constants and outer loop indexes.

for i1 = 1 to N do

for i2 = i1+1 to N do
for i3 = N+1 downto i1 do

a[i2][i3] = a[i2][i3] - a[i1][i3] * a[i2][i1] / a[i1][i1]

Figure 1: Elimination Phase of Gaussian Elimination

3



2.1 De�nitions

De�nition 2.1 An iteration vector i = [i1, . . . , in]T ∈ Zn is a vector of the indexes of n nested loops. An

iteration instance of an iteration vector is an instance of the loop nest.

De�nition 2.2 An array reference is represented as a tuple a = (X, l,F , ω, e) where:

• X is the name of the array

• l is the number of subscripts

• F(i) = F i+ f is an a�ne expression called an access function which maps an iteration instance i to an

element of the array, where F is an l × n matrix of symbolic constants and f is a vector of l symbolic

constants

• ω is a boolean, which is set to true i� the array reference is a write operation (i.e. appears on the lhs

of an assignment operator)

• e is the element size in bytes

De�nition 2.3 The loop bounds of a loop nest s are given by the a�ne expression Ds(i) = Dsi+ds, where

i is a iteration instance, Ds is a 2n × n matrix of symbolic constants and ds is a vector of 2n symbolic

constants.

The iteration instance i is a valid iteration instance for loop nest s i� Ds(i) ≥ ~0, where ~0 is a vector of 2n

zeros. The loop bounds for the loop nest in Figure 1 are shown in equation (3) of the appendix.

De�nition 2.4 The lexicographically less than operator ≺ is de�ned recursively for two iteration vectors

i, i′ ∈ Zn such that i ≺ i′ i�

i1 < i′1 ∨ (i1 = i′1 ∧ i2:n ≺ i′2:n) .

The lexicographical operator provides a total ordering of the iteration instances of a loop nest such that

i ≺ i′ i� iteration i is executed prior to iteration i′ when executed sequentially on a single processor.

2.2 A�ne Partitioning and Parallel Code Generation

Lim and Lam [17] developed a technique to determine the computation decomposition (or partitioning) that

provides the coarsest granularity of parallelism for a given order of communication. It is claimed in [17] that

their partitioning algorithm �... subsumes previously proposed loop transformation algorithms that are based

on unimodular transformations, loop distribution, fusion, scaling, reindexing and statement reordering.� This

4



partitioning determines how the iterations of a loop nest will be divided into individual tasks, which can be

executed in parallel.

De�nition 2.5 An a�ne partitioning Φs(i) = Csi + cs, where Cs is an 1× n matrix of symbolic constants

and cs is a scalar symbolic constant, is the mapping of an iteration instance of a loop nest s to a partition

number.

Partition numbers are not necessarily positive, and their range may be arbitrarily large. We refer to these

partitions as virtual processors, since each partition could potentially be executed by a di�erent processor, if

an unlimited number of processors were available. An example of an a�ne partitioning is shown in equation

(4) of the appendix for the loop nest in Figure 1.

Once an a�ne partitioning has been derived, it determines which virtual processors will execute each

iteration instance. A system of constraints A = {(Ds(i) ≥ ~0) ∪ (p = Φs(i))} is built from the loop

bounds and the partitioning. (An equality constraint, such as p = Φs(i), can be rewritten as two inequality

constraints: p ≥ Φs(i) ∧ p ≤ Φs(i).) An example of this system of constraints is shown in equation (5) of

the appendix. The system also de�nes a polyhedra in n-space. The order of the unknowns is important,

since it determines the order of the nesting of the resulting loops. The virtual processor p should be the �rst

(outermost loop), because this loop will be transformed to an if statement.

We do not discuss nor attempt to solve the problem of determining the best partitioning; instead, the

reader is referred to [17]. However, once an a�ne partitioning is determined, the SPMD (Single Program

Multiple Data) code to execute the parallel version of the loop nest s can be generated using an algorithm

based on Fourier-Motzkin elimination (FME) [3]. Equations (4)-(8) of the appendix show the progression of

FME as it builds the transformed loop nest shown in Example 1 of the appendix. We also refer the interested

reader to [3, 4, 14, 25, 26] for a thorough discussion of FME and how it is used to build the loop nest from a

system of constraints. Other methods exist to generate the loop nests from polyhedra such as [20]. However,

we do not address the problem of transforming a system of constraints to a loop nest. Instead, we are more

interested in how the system is built and the ordering of the loops that are generated. Once the loop nest

has been created from the system of constraints, the p loop is then changed to an if statement since each

processor will be responsible for a single iteration of that loop. We can also replace degenerate loops with

single assignment statements resulting in the parallelized loop shown in Figure 2.

We make the assumption in this paper that a loop nest created from a system of constraints using

FME will execute an iteration instance i� that iteration instance is a solution to the system. Xue [26]

actually showed that, for integer solutions, FME is not exact. One can contrive an example where the above

assumption is invalid. However, FME is widely used as an e�ective algorithm for generating loop nests from

5



if 2 <= p AND p <= N then

for i1 = 1 to p-1 do begin
i2 = p
for i3 = N+1 downto i1 do

a[i2][i3] = a[i2][i3] - a[i1][i3] * a[i2][i1] / a[i1][i1]
end

Figure 2: Resulting Parallel Loop Nest for Gaussian Elimination Using the Partitioning p = Φs(i) = i2

a system of constraints for real applications.

2.3 Last Write Tree

In [18], Maydan, Amarasinghe, and Lam developed the concept of a last write tree, which is a value-centric

approach to data dependencies as opposed to a location-centric approach. A last write tree is a mapping

from an iteration which reads a value of an array to the exact iteration which produced the value. This

approach is useful for message-passing because it allows for parallelism to be determined by a computation

decomposition instead of a data decomposition.

De�nition 2.6 A last write data dependence Lawar : Zn −→ Zn is a mapping from a read array access

ar and iteration instance ir to the write array access aw and iteration instance iw that produced the value

required. That is, given two array references ar, aw of a loop nest s with access functions Far (ir) and Faw(iw),

respectively, such that ωar = false and ωaw = true, then Lawar (ir) = iw i�

Ds(iw) ≥ ~0 ∧ Ds(ir) ≥ ~0 ∧ Faw(iw) = Far (ir) ∧ iw ≺ ir ∧
(
6 ∃ i′w such that Ds(i′w) ≥ ~0 ∧ Faw(i′w) = Far (ir) ∧ iw ≺ i′w ≺ ir

)
.

This de�nition states that for iw to be the last write iteration for ir, both must be valid iterations, the

array elements that are referenced must be the same, iw must execute prior to ir, and there cannot be

another iteration between ir and iw that also modi�es the same array element. Notice that the last write

data dependence implies that a read array access has no more than one write access from which it gets its

value. On the other hand, a write access may have many read accesses that use its value. Equation (9)

of the appendix shows the last write dependence between the a[i2][i3] array access on the lhs and the

a[i1][i3] array access on the rhs of the program example in Figure 1.

6



2.4 Building the System

In order to use the data dependence information to send and receive dependent data, we create variables for

both the receiving as well as the sending processors and iteration instances: pr, pw, ir, and iw. The system

of constraints should include the loop bounds Ds(ir) ≥ ~0 and Ds(iw) ≥ ~0, the partitioning pr = Φs(ir) and

pw = Φs(iw), the last write dependence (which ties the receive and send variables together) iw = Lawar (ir),

and �nally the constraint that pr 6= pw. This information determines the valid iterations for which there

is a data dependence and for which that data is non-local. Therefore, communication is required between

virtual processors pr and pw. Equation (10) of the appendix shows the entire system of constraints for the

example in Figure 1.

Note that the constraint pr 6= pw cannot be written in a form that is consistent with a system of

inequalities, where all constraints must be satis�ed. Instead, we can rewrite it as pr ≤ pw−1 ∨ pr ≥ pw +1.

Since this requires the ∨ operator, we have to create two systems, one with each of these new constraints,

and solve both. This can produce two sets of communication code for each dependency, although we have

found that one of these sets of constraints will usually be inconsistent and hence, no communication will

be performed. In the discussion below, we will continue to use the constraint pr 6= pw, although it actually

means there should be two systems; one with each of the constraints: pr ≤ pw − 1 and pr ≥ pw + 1.

In order to create the code to perform communication, we create two loop nests where the unknowns

are ordered pr, pw, ir, iw for receiving data and pw, pr, ir, iw for sending data. Recall, that the order of the

unknowns determines the order in which the loops are generated using FME. These loops will iterate over all

pairs of virtual processors and all iterations instances (mapped to those virtual processors) such that there

is a data dependence between iteration instance iw that produces a value and an iteration instance ir that

reads a value. Each virtual processor p will execute the �rst loop for only those iterations where p = pr, to

receive all the data that it needs to read. Likewise, virtual processor p will execute the second loop for only

those iterations where p = pw, to send locally computed information to the processors that require it. The

bodies of the loop nests are instructions to pack data into and unpack data out of the message bu�er.

Consider the elimination phase of Gaussian elimination shown in Figure 1. There is a data dependence

from the lhs of the assignment (a[i2][i3]) for iteration instance iw to the array reference a[i1][i3] for

iteration instance ir such that i1w = i1r − 1, i2w = i1r , and i3w = i3r . After building the system (also

see equation (10) of the appendix) and using FME, the resulting communication loop nests are shown in

Figure 3. Many of the loops are degenerate and have been replaced by single assignment statements. The

parallelized loop nest of Figure 2 is then inserted between the receive loop nest in Figure 3(a) and the send

loop nest in Figure 3(b).

7



pr = p
if 3 <= pr AND pr <= N then

for pw = 2 to pr-1 do begin
receive from pw
i1r = pw
i2r = pr
for i3r = pw to N+1 do begin

i1w = pw-1
i2w = i1w+1
i3w = i3r
unpack a[i1r][i3r]

end
end

(a) The receive loop nest

pw = p
if 2 <= pw AND pw <= N-1 then

for pr = pw+1 to N do begin
i1r = pw
i2r = pr
for i3r = pw to N+1 do begin

i1w = pw-1
i2w = i1w+1
i3w = i3r
pack a[i2w][i3w]

end
send to pr

end

(b) The send loop nest

Figure 3: Communication loop nests for the dependency a[i2][i3] to a[i1][i3] in the loop nest shown in
Figure 1

The technique described above for producing communication code will create a program that must �rst

receive all of its data before executing any computations, and then performs all of its computations before

sending any data. The resulting program may very well execute sequentially and could run slower than the

single-processor sequential execution. However, in previous work [9], we presented a technique to overlap

the communication with computation. Here, we are primarily interested in generating a correct program.

3 Communication Loop Nest Generation

This is where the contribution of this paper begins. First we revisit the communication algorithms proposed

by Amarasinghe and Lam [1]. We formalize the algorithms with a slight modi�cation to the ordering of

the unknowns. Second, we prove the correctness of the new algorithms. Then, in section 4, we extend

the communication algorithms to incorporate a mapping of virtual to physical processors and prove the

correctness of this extension.

3.1 Communication Code Generation Algorithms

Algorithms 1 and 2 show how the two loop nests are created to receive and send messages, respectively, for a

particular data dependence, given the system of constraints and the order of the unknowns. Notice that the

outermost loop is actually used as the current processor id. Each processor is only interested in participating

in communication where it is either the sending processor or one of the receiving processors. It does not need

8



Algorithm 1 Receive Data Loop Nest Generation
Input:

• a system of constraints A that describes the processors and iterations that need to communicate

• vector Ψ = [pr, pw, ir, iw]T which contains the unknowns of A. The order of the unknowns in Ψ will be the order of the
loop nests. The �rst unknown should be pr and is used as the current processor id.

• the unknown pw to be used as the sending processor

• the array access functions Far (i) and Faw (i)

Output: A loop nest for each processor to receive the value of array reference ar from the processor that computes it

Steps:

1. Create an instruction to unpack Xar [Far (ir)]

2. Use FME to build a loop nest from A and Ψ from the inside out with the body being the instruction from step 1 until
the variable pw is reached

3. For the pw loop, create the loop with a body that consists of:

(a) A receive instruction to receive a message from processor pw

(b) The loop nest from step 2

4. Continue using FME to build a loop nest from the remaining variables with the body from step 3 until all variables have
been eliminated

5. Finally, convert the outermost loop �for pr = lbpr to ubpr do begin ... end� to

pr = p
if lbpr ≤ pr AND pr ≤ ubpr then begin ... end

9



Algorithm 2 Send Data Loop Nest Generation
Input:

• a system of constraints A that describes the processors and iterations that need to communicate

• vector Ψ = [pw, pr, ir, iw]T which contains the unknowns of A. The order of the unknowns in Ψ will be the order of the
loop nests. The �rst unknown should be pw and is used as the current processor id.

• the unknown pr to be used as the receiving processor

• the array access functions Far (i) and Faw (i)

Output: A loop nest for each processor to send the value of array reference aw to the processors that need it

Steps:

1. Create an instruction to pack Xaw [Faw (iw)]

2. Use FME to build a loop nest from A and Ψ from the inside out with the body being the instruction from step 1 until
the variable pr is reached

3. For the pr loop, create the loop with a body that consists of:

(a) The loop nest from step 2
(b) A send instruction to send a message to processor pr

4. Continue using FME to build a loop nest from the remaining variables with the body from step 3 until all variables have
been eliminated

5. Finally, convert the outermost loop �for pw = lbpw to ubpw do begin ... end� to

pw = p
if lbpw ≤ pw AND pw ≤ ubpwthen begin ... end

10



Algorithm 3 Create Communication Loop Nests
Input:3

• Two array references ar and aw contained within a loop nest s for the same array X such that ωar = false, ωaw = true

• The vector of loop indexes to be used for receiving ir and the vector of loop indexes to be used for sending iw

• The variable used for the receiving processor pr and the variable used for the sending processor pw

• The loop bounds Ds(i) for the instruction s

• The last write data dependence mapping Lawar (i)

• The array access functions Far (i) and Faw (i)

• The a�ne partitioning Φs(i)

Output: A loop nest for each processor to receive the value of array reference ar from the processor that computes it and
a loop nest for each processor to send the value of array reference aw to the processors that need it

Steps:

1. Create the system of constraints:

A =

8
<
:

Ds(ir) ≥ ~0 ∪ Ds(iw) ≥ ~0 ∪
pr = Φs(ir) ∪ pw = Φs(iw) ∪
iw = Laraw (ir) ∪ pw 6= pr

9
=
;

2. If A does not have a solution, then stop (no communication is necessary)

3. Use Algorithm 1 with inputs: A, Ψr = [pr, pw, ir, iw]T, pw, Far (ir), Faw (iw) to create a receive loop nest

4. Use Algorithm 2 with inputs: A, Ψw = [pw, pr, ir, iw]T, pr, Far (ir), Faw (iw) to create a send loop nest

5. Surround the parallelized loop nest s with the receive loop nest and send loop nest

to participate in communication between other processors. In addition, notice the complementary processing

in step 3 of Algorithms 1 and 2. In Algorithm 1 step 3, data are received then unpacked. In Algorithm 2

step 3, data are packed then sent.

Next, Algorithm 3 shows how to take a data dependence and build the system to be used by the �rst

two algorithms. Notice that the order of the unknowns is the same, with the exception that pr and pw are

reversed, in steps 3 and 4.

3.2 Proof of Correctness

In this section, we prove in Theorem 3.2 that Algorithm 3 (and subsequently Algorithms 1 and 2) will correctly

exchange dependent data between virtual processors. The �rst part of the proof is that the processors will

send messages to and receive messages from the correct processors. This is a fairly straight forward part of

the proof because of the way in which the system of constraints is built.

The second part of the proof is more important. That is, when a processor packs data into the bu�er to

send to another processor, the receiving processor must unpack the data in the correct order. We can think

of the message bu�er as a single dimensional array. Then to prove that the sending and receiving processors

11



will pack and unpack in the same order, we need to show that any given array element in the bu�er has the

same o�set from the point of view of either processor. This brings us to the following de�nition:

De�nition 3.1 Let B(i, A, e) be a mapping from an iteration instance i for a receive or send loop nest that

unpacks or packs an array element to its o�set within the message. That is,

B(i, A, e) =




n∑

j=1

(ij − lbij
) ·

n∏

k=j+1

(ubik
− lbik

+ 1)


 · e

where e is the element size and lbij
and ubij

are the lower and upper bounds of the variables ij, respectively,

derived from A.

The function B is essentially the mapping of a multi-dimensional array to a single-dimensional array, where

each loop index is considered another dimension.

Theorem 3.2 Let ar, aw be two array references for the same array X within a loop nest s such that

ωar = false and ωaw = true. Also let i′r and i′w be iteration instances of instruction s such that Ds(i′r) ≥ ~0,

Ds(i′w) ≥ ~0, i′w = Lawar (i
′
r), p′r = Φs(i′r), and p′w = Φs(i′w). If p′r 6= p′w, then Algorithm 3 will generate loop

nests such that

• processor p′w sends a message containing X[Faw(i′w)] at o�set bw to processor p′r,

• processor p′r receives a message containing X[Far (i
′
r)] at o�set br from processor p′w, and

• Faw(i′w) = Far (i
′
r) and bw = br.

Proof: Algorithm 1, using FME, will generate a loop nest such that processor p′r will received

a packet from processor p′w and unpack the value X[Far (i
′
r)] because pr = p′r, pw = p′w, ir = i′r,

and iw = i′w is a solution to A. Likewise, Algorithm 2 will generate a loop nest such that

processor p′w will pack the value X[Faw(i′w)] and send the packet to processor p′r, again because

pr = p′r, pw = p′w, ir = i′r, and iw = i′w is a solution to A. Also, i′w = Lawar (i
′
r) implies that

Faw(i′w) = Far (i
′
r).

The o�set used to unpack the value X[Far (i
′
r)] from the message received by p′r is the number

of iterations of the loops created in step 2 of Algorithm 1, since each new message will have a

new o�set starting at zero. Therefore, br = B([i′r, i
′
w]T, A, ear ). Likewise, the o�set used to pack

the value X[Faw(i′w)] in the message sent by p′w is the number of iterations of the loops created

in step 2 of Algorithm 2. Therefore, bw = B([i′r, i
′
w]T, A, eaw). Since ar and aw refer to the same

array, the element size is the same. Also, since the order of the unknowns of i′r and i′w in Ψr and

12



Ψw are the same for both algorithms, the upper and lower bounds of the vector [i′r, i′w]T will be

equal. Therefore, bw = br.

Notice from the proof of Theorem 3.2 that to insure that bw = br, we need the same vector [i′r, i
′
w]T for

the computation of the o�sets. This requires that Algorithm 3 steps 3 and 4 use the same ordering of

the loop indexes that follow pw and pr. Amarasinghe and Lam, in their algorithm, ordered the unknowns

pr, ir, pw, iw and pw, iw, pr, ir in the receive and send loop nests, respectively. This ordering is di�erent for

the receive side than it is for the send side, which may produce a di�erent o�set. It is not clear if and when

B(iw, A, eaw) = B(ir, A, ear ).

We made this modi�cation to their algorithm so that we could prove that the o�sets of the same array

element would be the same for both processors. In fact, after we extend the algorithm in the next section,

the ordering of the unknowns proposed by Amarasinghe and Lam will produce loop nests such that the data

are packed in a di�erent order than they are unpacked. We will show an example of this incorrect ordering

in the next section. On the other hand, using the ordering that we propose in Algorithm 3, the data are

guaranteed to be packed and unpacked in the same order.

3.2.1 Complexity of the Algorithm

The complexity of Algorithm 3, given the inputs, is the complexity of Fourier-Motzkin Elimination. Steps

2 through 4 of Algorithms 1 and 2 perform the FME. Kessler [14] established the worst case complexity of

FME to be:

O(
j−1∑
r=0

(j − r)
k2r

4(2r−1)
) (1)

where j is the number of unknowns and k is the number of constraints. In the worst case scenario, the

number of constaints of the system A can double as each variable is eliminated, if the number of lower

bounds and the number of upper bounds on that variable is approximate j/2. However, Kessler argued that

the average run time should be considerable lower for two reasons:

1. The probability that the number of lower bounds and the number of upper bounds on a variable are

j/2 at each step in the process is rather small.

2. A sparse matrix of coe�cients will not generate many new constraints since only non-negative coe�-

cients generate new constraints. As more variables are eliminated from the system the matrix becomes

more sparse.

For Algorithm 3, the number of unknowns is j = 2n + 2, where n is number of nested loops. The number of

constrains is k = 6n + 5: the lower and upper bounds on the loop variables Ds(ir) ≥ ~0 and Ds(iw) ≥ ~0 each

13



represent 2n constraints; the partitioning pr = Φs(ir) and pw = Φs(iw) each represent 2 constraints; the

LWT iw = Lawar
(ir) represents 2n constraints; and the requirement that pw 66= pr represents 1 constraint.

Step 1 of Algorithm 3 is O(jk). Step 2 of Algorithm 3 does not add to the complexity since it is actually a

result of FME routine. The routine either produces a solution, if it exists, or a failure is there is not solution.

Step 5 of Algorithm 3 and steps 1 and 5 of Algorithms 1 and 2 are all constant operations. Therefore, the

worst case complexity of Algorithm 3 is equation (1) where j = 2n + 2 and k = 6n + 5.

4 Mapping of Partitions to Physical Processors

The technique described in section 3 to generate message-passing code will produce a correct program;

however, the performance may be poor. This is primarily due to the fact that messages are sent between

pairs of virtual processors instead of physical processors. There can be many messages sent between di�erent

pairs of virtual processors, all of which are executed by the same pair of physical processors. A better strategy

is to include the mapping of virtual to physical processors as part of the system of constraints from which

the message-passing code is generated. This allows the code generator to create single messages between

pairs of physical processors, greatly reducing the total number of messages.

4.1 Communication Code Generation Algorithm

To follow this strategy, we formally de�ne a mapping of partitions to physical processors. Essentially, the

mapping needs to take a set of integers that have an arbitrary range, and map it to a set of integers with

a restricted range. We use the symbolic constant P to represent the total number of physical processors,

which is determined at runtime. We also assume the processors have a unique id in the range [0..P ).

De�nition 4.1 A partition-to-physical-processor mapping Ms : Z → [0..P ) is a mapping of partitions p ∈
[lbp..ubp] to physical processor ids pid ∈ [0..P ).

To use this mapping, we modify our algorithm to include two new unknowns pidr and pidw, add

constraints for pidr = Ms(pr) and pidw = Ms(pw), replace the constraint pr 6= pw with the constraint

pidr 6= pidw, and use pidr and pidw as the variables for sending and receiving messages. Notice that

the mapping function adds the implicit constraints 0 ≤ pidr < P and 0 ≤ pidw < P . We can then use

14



Algorithm 3 to generate the message passing code if we rede�ne the functions. Let

D∗s([p, i]T) = D∗
s [p, i]T + d∗s

F∗ar
([p, i]T) = Far (i)

F∗aw
([p, i]T) = Faw

(i)

L∗awar
([p, i]T) = Lawar

(i)

Φ∗s([p, i]T) = Ms(Φs(i))

(2)

where,

D∗
s =




~0 Ds

1 −Cs

−1 Cs




and d∗s =




ds

−cs

cs




.

Recall from De�nitions 2.3 and 2.5 that Ds(i) = Dsi + ds and Φs(i) = Csi + cs, where Ds is a 2n × n

matrix, ds is a 2n element vector, Cs is a 1× n matrix, and cs is a scalar. The notation D∗
s does not refer

to a matrix with matrices nested within it, but rather refers to a matrix having the elements of Ds with 2n

zeros in the left column, the elements of Cs negated with ones in the left column, and the elements of Cs

and negative ones in the left column. The construction of D∗
s and d∗s is such that D∗s([p, i]T) ≥ ~0 satis�es

both the loop bound constraints as well as the partitioning constraints, since:

D∗s([p, i]T) ≥ ~0 ⇒ D∗
s [p, i]T + d∗s ≥ ~0

⇒ (0 · p + Dsi + d∗s ≥ ~0) ∧ (1 · p− Csi− cs ≥ 0) ∧ (−1 · p + Csi + cs ≥ 0)

⇒ (Dsi + ds ≥ ~0) ∧ (p ≥ Csi + cs) ∧ (p ≤ Csi + cs)

⇒ (Ds(i) ≥ ~0) ∧ (p = Φs(i)).

We will then use Algorithm 3 with the variables pidr and pidw as the processors ids. The virtual processors

ids are now simply loop indexes. Algorithm 4 shows how this is accomplished, and Theorem 4.2 proves its

correctness.

We are not addressing the problem of how to determine the best mapping function for a program which

is NP-hard in general [5]. However, separating the mapping function from the communication loop nest

generation is essential for proceeding with the mapping problem. There are many mapping, scheduling, and

clustering heuristics in the literature that address the mapping of virtual processors to physical processors.

(See [10, 11, 15, 16, 19, 23] for a sample of papers that have published comparisons or surveys of scheduling

heuristics.) In order to make use of these heuristics, they need to be able to be inserted easily into the

compiler. Generalizing the mapping function, as we have done here, is a step toward that process. The

15



Algorithm 4 Create Communication Loop Nests
Input:

• Two array references ar and aw contained within a loop nest s for the same array X such that ωar = true and ωaw = false

• The vector of loop indexes to be used for receiving ir and the vector of loop indexes to be used for sending iw

• The variable used for the receiving virtual processor pr and the variable used for the sending virtual processor pw

• The variable used for the receiving physical processor pidr and the variable used for the sending physical processor pidw

• The loop bounds Ds(i) for the instruction s

• The last write data dependence mapping Lawar (i)

• The array access functions Far (i) and Faw (i)

• The a�ne partitioning Φs(i)

• The physical processor mapping Ms(p)

Output: A loop nest for each processor to receive the value of array reference ar from the processor that computes it and
a loop nest for each processor to send the value of array reference aw to the processors that need it

Steps:

1. De�ne the functions from equation (2).

2. Use Algorithm 3 with input ar, aw, [pr, ir]T, [pw, iw]T, pidr, pidw, D∗s (i), L∗awar
(i), F∗ar

(i), F∗aw
(i), Φ∗s(i).

next step, which is non-trivial, will be to adapt the heuristics to provide a generic mapping function given

a description of the dependencies between virtual processors.

Theorem 4.2 Let ar, aw be two array references for the same array X within a loop nest s such that

ωar = false and ωaw = true. Also let i′r and i′w be iteration instances of instruction s such that Ds(i′r) ≥ ~0,

Ds(i′w) ≥ ~0, i′w = Lawar (i
′
r), pid′r = Ms(p′r = Φs(i′r)), and pid′w = Ms(p′w = Φs(i′w)). If pid′r 6= pid′w, then

Algorithm 4 will generate loop nests such that

• processor pid′w sends a message containing X[Faw(i′w)] at o�set bw to processor pid′r,

• processor pid′r receives a message containing X[Far (i
′
r)] at o�set br from processor pid′w, and

• Faw(i′w) = Far (i
′
r) and bw = br.

Proof: Given the inputs to Algorithm 3 in step 2, we know from Theorem 3.2 that Algorithm 3

will generate a loop nest such that processor pid′w will send a message containing the value

X[F∗aw
([p′w, i′w]T)] at o�set bw to processor pid′r, processor pid′r will receive a message contain-

ing the value X[F∗ar
([p′r, i

′
r]
T)] at o�set br from processor pid′w, such that F∗aw

([p′w, i′w]T) =

F∗ar
([p′r, i

′
r]
T) and bw = br. Since F∗aw

([p′w, i′w]T) = Faw(i′w) and F∗ar
([p′r, i

′
r]
T) = Far (i

′
r),

then Faw(i′w) = Far (i
′
r).

16



4.1.1 Complexity of the Algorithm

The complexity of Algorithm 4 is based on the complexity of Algorithm 3. The number of unknowns is now

j = 2n + 4, where n is number of nested loops, due to the introduction of the two variables pidr and pidw.

The number of constraints is now j = 6n + 9 because of the introduction of the constraints pidr = Ms(pr)

and pidw = Ms(pw).

4.1.2 Example of Incorrect Ordering

We mentioned previously that the order of the unknowns for the innermost loops (inside pw for the receive

loop nest and inside pr for the send loop nest) must be the same when we incorporate the mapping of virtual

processors to physical processors. To demonstrate that a di�erent ordering of the loop variables can produce

code that causes the processors to pack and unpack data in a di�erent order, we ran Algorithm 4 using the

ordering proposed by Amarasinghe and Lam on the following (contrived) example:

for i2 = 1 to N do

for i3 = 1 to N do

a[i2][i3] = a[i2][i3] + a[i3][i2-1]

Figure 4 shows the resulting send and receive loop nests for the data dependency. For this example, we used

a partitioning function of p = Φs(i) = i2 and mapping function of:

Ms(p) =
⌊

p− lbp

blksz

⌋

where blksz = d(ubp − lbp + 1)/P e. The mapping function Ms(p) has the e�ect of assigning a block of

partitions to each physical processor. Thus, a given processor mypid will be responsible for the partitions p

such that lbp + blksz ·mypid ≤ p < lbp + (mypid + 1) · blksz. Figure 5 shows an excerpt from the debugging

messages when the program was executed using N = 8 and P = 4. One can see that the data are packed

and unpacked in a di�erent order producing incorrect results.

5 Results

In this section we compare the performance of two programs compiled using Algorithms 3 and 4. The two

input program that we used for the comparison are Gaussian elimination and LU decomposition. We ran

these programs on a cluster of 11 dual-processor Pentium PCs connected through a FastEthernet switch

using MPI as the message-passing medium.

17



pidr = mypid
if 1 <= pidr AND pidr <= min((-1+N)/blksz, -1+P)

then begin
for pidw = 0 to -1+pidr do begin

receive from pidw
for pr = 1+blksz*pidr to min(blksz+blksz*pidr, N)

do begin
i2r = pr
for i3r = 1+blksz*pidw to blksz+blksz*pidw

do begin
pw = i3r
i2w = pw
i3w = -1+i2r
unpack a[i3r][i2r - 1]

end
end

end

end

(a) The receive loop nest

pidw = mypid
if 0 <= pidw AND pidw <= min(-2+P, (-1-blksz+N)/

blksz) then begin
for pidr = 1+pidw to min(-1+P, (-1+N)/blksz)

do begin
for pw = 1+blksz*pidw to blksz+blksz*pidw

do begin
i2w = pw
for i3w = blksz*pidr to min(-1+N, -1+blksz+

blksz*pidr) do begin
pr = 1+i3w
i2r = 1+i3w
i3r = i2w
pack a[i2w][i3w]

end
end
send to pidr

end

end

(b) The send loop nest

Figure 4: Example of Incorrect Ordering of the Loops

...
<pid2>: a[5][1] = a[5][1] + a[1][4]
<pid2>: a[5][2] = a[5][2] + a[2][4]
<pid2>: a[5][3] = a[5][3] + a[3][4]
<pid2>: a[5][4] = a[5][4] + a[4][4]
<pid2>: a[5][5] = a[5][5] + a[5][4]
<pid2>: a[5][6] = a[5][6] + a[6][4]
<pid2>: a[5][7] = a[5][7] + a[7][4]
<pid2>: a[5][8] = a[5][8] + a[8][4]
<pid2>: a[6][1] = a[6][1] + a[1][5]
<pid2>: a[6][2] = a[6][2] + a[2][5]
<pid2>: a[6][3] = a[6][3] + a[3][5]
<pid2>: a[6][4] = a[6][4] + a[4][5]
<pid2>: a[6][5] = a[6][5] + a[5][5]
<pid2>: a[6][6] = a[6][6] + a[6][5]
<pid2>: a[6][7] = a[6][7] + a[7][5]
<pid2>: a[6][8] = a[6][8] + a[8][5]
<pid2>: pack a[5][6]
<pid2>: pack a[5][7]
<pid2>: pack a[6][6]
<pid2>: pack a[6][7]
<pid2>: send to <pid3>

...

...
<pid3>: receive from <pid2>
<pid3>: unpack a[5][6]
<pid3>: unpack a[6][6]
<pid3>: unpack a[5][7]
<pid3>: unpack a[6][7]
<pid3>: a[7][1] = a[7][1] + a[1][6]
<pid3>: a[7][2] = a[7][2] + a[2][6]
<pid3>: a[7][3] = a[7][3] + a[3][6]
<pid3>: a[7][4] = a[7][4] + a[4][6]
<pid3>: a[7][5] = a[7][5] + a[5][6]
<pid3>: a[7][6] = a[7][6] + a[6][6]
<pid3>: a[7][7] = a[7][7] + a[7][6]
<pid3>: a[7][8] = a[7][8] + a[8][6]
<pid3>: a[8][1] = a[8][1] + a[1][7]
<pid3>: a[8][2] = a[8][2] + a[2][7]
<pid3>: a[8][3] = a[8][3] + a[3][7]
<pid3>: a[8][4] = a[8][4] + a[4][7]
<pid3>: a[8][5] = a[8][5] + a[5][7]
<pid3>: a[8][6] = a[8][6] + a[6][7]
<pid3>: a[8][7] = a[8][7] + a[7][7]
<pid3>: a[8][8] = a[8][8] + a[8][7]

...

Figure 5: Excerpt of Debug Messages Using Incorrect Ordering

18



For these two input programs, we chose to assign a block of virtual processors to each physical processor.

For Algorithm 3, the compiler inserted the parallelized loop nests along with their corresponding send and

receive loop nests into the following loop to perform the tiling of virtual processors:

blksz = d(ubp − lbp + 1)/Pe
for p = lbp + mypid * blksz to min(ubp, lbp + (mypid + 1) * blksz - 1) do begin

...

end

Figure 6 shows communication loop nests generated by Algorithm 3 for the data dependence between the

a[i2][i3] array access on the lhs and the a[i1][i3] array access on the rhs of the program example in

Figure 1.

For Algorithm 4, we used the following mapping function:

Ms(p) =
⌊

p− lbp

blksz

⌋

where blksz = d(ubp − lbp + 1)/P e. Figure 7 shows the communication loop nest for the same data depen-

dence as Figure 6, but this time generated by Algorithm 4. The total clock time for the compiler to run

from source to MPI and then to executable using each algorithm is shown in Table 1.

One can see that the total number of messages sent from all virtual processors using the loop nest in Figure

6 is proportional to (N −1)(N −2)(P −1)/(2P ). This function asymptotically approaches (N −1)(N −2)/2

as P approaches N . Since we consider P << N , then we consider the number of messages sent from the

loop in Figure 6 to be O(N2). One can also see that the total number of messages sent from all physical

processors using the loop nest in Figure 7 is proportional to (P − 1)(P − 2)/2 = O(P 2). Figure 8 shows an

actual count of the total number of messages for both loop nests where N = 100.

Although the mapping of virtual processors to physical processors is the same for both algorithms,

Algorithm 3 generates individual messages between pairs of virtual processors. Thus, Algorithm 3 gives rise

to a parallel program that will generate numerous short messages. In contrast, since Algorithm 4 incorporates

the mapping Ms(p) in the system used to generate the communication loops, messages are aggregated. Thus,

Algorithm 4 gives rise to a parallel program that will generate larger but fewer messages.

Figures 9 and 10 also show the execution times of the two input programs using the two algorithms.

One can see from the results that the use of the mapping function to create the message-passing code via

Algorithm 4 signi�cantly improves the performance. This is primarily due to the reduction in the overall

number of messages. Although the curves for Algorithm 4 are �atter, there is still a trend downward as the

19



pr = mypid
if 3 <= pr AND pr <= N then begin

for pw = 2 to -1 + pr do begin
if mypid <> (pw - 2) / blksz then begin

receive from (pw - 2) / blksz
i1r = pw
i2r = pr
for i3r = pw to 1+N do begin

i1w = -1 + pw
i2w = pw
i3w = i3r
unpack a[i1r][i3r]

end
end

end
end

(a) The receive loop nest

pw = mypid
if 2 <= pw AND pw <= -1+N then begin

for pr = 1 + pw to N do begin
if mypid <> (pr - 2) / blksz then begin

i1r = pw
i2r = pr
for i3r = i1r to 1+N do begin

i1w = -1 + i1r
i2w = i1r
i3w = i3r
pack a[i2w][i3w]

end
send to (pr - 2) / blksz

end
end

end

(b) The send loop nest

Figure 6: Resulting Send and Receive Loop Nests from Algorithm 3

pidr = mypid
if 1 <= pidr AND pidr <= -1 + P then begin

for pidw = 0 to -1 + pidr do begin
receive from pidw
for pr = 2 + blksz * pidr to min(N, blksz + 1 + blksz

* pidr) do begin
for i1r = 2 + blksz * pidw to blksz + 1 + blksz

* pidw do begin
i2r = pr
for i3r = i1r to 1+N do begin

pw = i1r
i1w = -1 + pw
i2w = pw
i3w = i3r
unpack a[i1r][i3r]

end
end

end
end

end

(a) The receive loop nest

pidw = mypid
if 0 <= pidw AND pidw <= -2 + P then begin

for pidr = 1 + pidw to -1 + P do begin
for pr = 2 + blksz * pidr to min(N, blksz + 1 + blksz

* pidr) do begin
for i1r = 2 + blksz * pidw to blksz + 1 + blksz

* pidw do begin
i2r = pr
for i3r = i1r to 1+N do begin

pw = i1r
i1w = -1 + i1r
i2w = i1r
i3w = i3r
pack a[i2w][i3w]

end
end

end
send to pidr

end
end

(b) The send loop nest

Figure 7: Resulting Send and Receive Loop Nests from Algorithm 4

Table 1: Execution Time in Seconds of the Compiler
from Source to Executable using each Algorithm

Gaussian LU
Elimination Decomp

Total Compile Time
Using Algorithm 3 3.295 2.778
Total Compile Time
Using Algorithm 4 4.892 3.786

Figure 8: Total Number of Messages Send from all
Processors

20



Figure 9: Execution Times for Gaussian Elimina-
tion (100x100)

Figure 10: Execution Times for LU Decomposition
(100x100)

number of processors increases.

We were not able to obtain speedup with these examples for two reasons. First, there is redundant

information packed in each message between physical processors, causing the messages to be larger than

necessary. Second, because the messages contain redundant information, the message bu�ers will over�ow

with larger problem sizes. One can see from Figure 7 that with each iteration of the pr loop the same

values are being packed in the same message. The data that are packed are independent of the value of

pr. Therefore, the pr loop could be suppressed into a degenerate loop. This seems straightforward enough;

however, we have not yet investigated how to determine when redundant data is being packed and how best

to deal with it.

Another possibility for performance improvement is message relay. In the example programs that we used,

one processor sends the same data to many others processors. In this situation, the receiving processors

could relay the message, instead of the message always originating from the same processor. In hand-

coded experiments, we found that, although relaying does not reduce the number of messages, relaying does

signi�cantly improve the performance. We have not yet investigated how to determine if relaying can be

applied and how to implement it.

6 Conclusions and Future Work

In this paper, we revisited the algorithms proposed by Amarasinghe and Lam [1]. We made a modi�cation

to their algorithms so that we could prove the correctness of the message passing loop nests. This was

necessary so that we could extend the algorithms to incorporate the mapping of virtual processors to physical

processors. This extension reduces the number of messages. In the examples that we showed the extension

21



reduced the total number of messages from O(N2) to O(P 2), where N is the input size and P is the number

of processors.

The reason that it is important to introduce a formal speci�cation of the incorporation of mapping in

the communication code generation is so that we can make use of the many scheduling heuristic proposed

in the literature. We showed in previous work [10] that making use of a library of scheduling heuristics can

improve the average performance of the resulting programs. We need a generalized mapping function for the

communication code generation so that we can employ di�erent mapping and scheduling heuristics.

We envision a framework where the system of constraints that describes communication requirements can

be used by a heuristic to produce the mapping function Ms(p). How one can adapt a scheduling heuristic to

this framework is an open problem. Two possible solutions to this problem may be the Iterative Task Graph

(ITG) [27] and the Parameterized Task Graph (PTG) [7, 12]. If we can adapt heuristics to the framework

that we propose, then we can use a metaheuristic, such as in [10], to choose an appropriate heuristic for each

input program, therefore improving the average performance.

Appendix

Loop Bounds

Loop bounds can be represented by a system of constraints, which can be written as an expression of matrices

and vectors. The loop bounds for the loop nest in Figure 1 of the paper are:

i1 ≥ 1

i1 ≤ N

i2 ≥ i1 + 1

i2 ≤ N

i3 ≥ i1

i3 ≤ N + 1

⇒

i1 − 1 ≥ 0

N − i1 ≥ 0

i2 − i1 − 1 ≥ 0

N − i2 ≥ 0

i3 − i1 ≥ 0

N − i3 + 1 ≥ 0

22



⇒




1 0 0

−1 0 0

−1 1 0

0 −1 0

−1 0 1

0 0 −1




︸ ︷︷ ︸

·




i1

i2

i3




︸ ︷︷ ︸

+




−1

N

−1

N

0

N + 1




︸ ︷︷ ︸

≥




0

0

0

0

0

0




︸ ︷︷ ︸
Ds · i + ds ≥ ~0

(3)

A�ne Partitioning

A�ne partitioning is a technique to represent the assignment of loop iterations to partitions. This is also

internally stored in matrix and vector form. One possible a�ne partitioning for the loop nest in Figure 1 is:

Φs(i) = i2 =
[

0 1 0

]

︸ ︷︷ ︸
·




i1

i2

i3




︸ ︷︷ ︸

+ 0︸︷︷︸

Cs · i + cs

(4)

Joining the a�ne partitioning with the loop bounds gives a system A such that:

A = {(Ds(i) ≥ ~0) ∪ (p = Φs(i))} = Ds · i + d ≥ ~0 ∪





p ≥ i2

p ≤ i2





=




0 1 0 0

0 −1 0 0

0 −1 1 0

0 0 −1 0

0 −1 0 1

0 0 0 −1

1 0 −1 0

−1 0 1 0




·




p

i1

i2

i3




+




−1

N

−1

N

0

N + 1

0

0




≥




0

0

0

0

0

0

0

0




(5)

23



Using the system from equation (5), the lower and upper bounds for i3 are i1 ≤ i3 ≤ N +1. Projecting away

i3 from A using FME [3] produces:

A =




0 1 0 0

0 −1 0 0

0 −1 1 0

0 0 −1 0

1 0 −1 0

−1 0 1 0




·




p

i1

i2

i3




+




−1

N

−1

N

0

0




≥




0

0

0

0

0

0




(6)

Using the system from equation (6), the lower and upper bounds for i2 are max{i1, p} ≤ i2 ≤ min{N, p}.
Projecting away i2 from A using FME produces:

A =




0 1 0 0

0 −1 0 0

1 −1 0 0

0 −1 0 0

−1 0 0 0




·




p

i1

i2

i3




+




−1

N

−1

N − 1

N




≥




0

0

0

0

0




(7)

Using the system from equation (7), the lower and upper bounds for i1 are 1 ≤ i1 ≤ min{N, p− 1, N − 1}.
Projecting away i1 from A using FME produces:

A =




1 0 0 0

−1 0 0 0


 ·




p

i1

i2

i3




+



−2

N


 ≥




0

0


 (8)

Finally, using the system from equation (8), gives the lower and upper bounds for p of 2 ≤ p ≤ N . The

resulting parallel loop nest is:

for p = 2 to N do

for i1 = 1 to p-1 do

for i2 = p to p do

for i3 = N+1 downto i1 do

24



Example 1: Parallelized Gaussian Elimination

Notice that the i2 loop is degenerate. Also, the p loop will be converted to an if statement since each

virtual processor will executed a di�erent iteration. The �nal loop nest is shown in Figure 2 of the paper.

Last Write Tree

The last write tree between the array reference on the lhs (a0) and the second array reference on the rhs

(a2) in the loop nest from Figure 1 are:

iw = La0a2(ir) =








i1r
− 1

i1r

i3r




if Ds(ir) ≥ ~0 ∧ Ds([i1r
− 1, i1r

i3r
]T) ≥ ~0

unde�ned otherwise

(9)

For example, consider the iteration instance ir = [1, 2, 2]T. The value read by ir (a[1][2]) is de�ned outside

of the loop nest because iteration instance iw = [0, 1, 2]T is outside the loop bounds. However, the iteration

instance ir = [2, 3, 3]T needs to read the value a[2][3] which is last modi�ed by the iteration instance

iw = [1, 2, 3]T. An important consideration for the last write tree is that there is no other iteration instance

between iw and ir that modi�es the value a[2][3].

Communication Code Generation

The system used to create the communication code in Algorithm 3 step 1 is:

A =





Ds(ir) ≥ ~0 ∪ Ds(iw) ≥ ~0 ∪
pr = Φs(ir) ∪ pw = Φs(iw) ∪
iw = Laraw(ir) ∪ pw 6= pr





25



=









i1r − 1 ≥ 0

N − i1r
≥ 0

i2r
− i1r

− 1 ≥ 0

N − i2r ≥ 0

i3r
− i1r

≥ 0

N − i3r + 1 ≥ 0





∪





i1w − 1 ≥ 0

N − i1w
≥ 0

i2w − i1w − 1 ≥ 0

N − i2w
≥ 0

i3w
− i1w

≥ 0

N − i3w
+ 1 ≥ 0





∪





pr − i2r
≥ 0

i2r
− pr ≥ 0





∪





pw − i2w
≥ 0

i2w
− pw ≥ 0





∪




−i1w + i1r − 1 ≥ 0

i1w
− i1r

+ 1 ≥ 0

−i2w + i1r ≥ 0

i2w − i1r ≥ 0

−i3w + i3r ≥ 0

i3w − i3r ≥ 0





∪
{

pr − pw − 1 ≥ 0

}





(10)

The loop nests that result from this system are shown in Figure 3 of the paper.

References

[1] S. P. Amarasinghe and M. S. Lam, Communication optimization and Code Generation for distributed memory

machines, In the Proceedings of The ACM SIGPLAN '93 Conference on Programming Language Design and

Implementation (PLDI), Albuquerque, New Mexico, pp. 126�138, June 1993.

[2] C. Amza, A.L. Cox, S. Dwarkada, P. Keleher, H. Lu, R. Rajamony, W. Yu, and W. Zwaenepoel, TreadMarks:

Shared memory computing on networks of workstations, IEEE Computer , pp. 18�28, February 1996.

[3] C. Ancourt and F. Irigoin, Scanning polyhedra with DO loops, In the Proceedings of third ACM SIGPLAN

Symposium on Principles & Practice of Programming Languages (PPOPP), Williamsburg, Virginia, April 21-

24, pp. 39�50, 1991.

[4] U. Banerjee, Loop Transformations for Restructuring Compilers: The Foundations , Kluwer Academic Publishers,

Boston, MA, 1993.

[5] S.H. Bokari, On the mapping problem, IEEE Transactions on Computers , C-30, pp. 207-214, 1981.

[6] M.C. Carlisle and A. Rogers. Software caching and computation migration in Olden. In Proc. of the Fifth ACM

SIGPLAN Symp. on Principles & Practice of Parallel Programming , pages 29�38, Santa Barbara, Calif., July.

1995.

26



[7] M. Cosnard, E. Jeannot, T. Yang, SLC: Symbolic scheduling for executing parameterized task graphs on mul-

tiprocessors, in the Proceedings of the International Conference on Parallel Processing (ICPP'99), Wakamatsu,

Japan, September 21-24, 1999.

[8] A. L. Cox, S. Dwarkadas, H. Lu, and W. Zwaenepoel, Evaluating the performance of software distributed shared

memory as a target for parallelizing compilers, In the Proceedings of the 11th International Parallel Processing

Symposium, Geneva, Switzerland, pp. 475�482, April 1-5, 1997.

[9] C.S. Ferner, "The Paraguin compiler�Message-passing code generation using SUIF," in the Proceedings of the

IEEE SoutheastCon 2002 , Columbia, SC, pp. 1�6, April 5-7, 2002.

[10] C.S. Ferner and R.G. Babb, Automatic choice of scheduling heuristics for parallel/distributed computing, Sci-

enti�c Programming , 7(1):47�65, 1999.

[11] Apostolos Gerasoulis and Tao Yang. A comparison of clustering heuristics for scheduling directed acyclic graphs

on multiprocessors. Journal of Parallel and Distributed Computing , 16(4):276-291, December 1992.

[12] E. Jeannot, Automatic multithreaded parallel program generation for message passing multiprocessors using pa-

rameterized task graphs, in the Proceedings of Parallel Computing 2001 (ParCo2001), Naples, Italy, September,

2001.

[13] P. J. Keleher, Update Protocols and cluster-based shared memory, Computer Communications 22(11):1045�

1055, July 1999.

[14] C.W. Kessler, Parallel fourier-motzkin elimination, In Proceedings of Euro-Par'96, Lyon , France, August 1996,

Springer LNCS 1124 , pp. 66�71. (Full version of paper available at http://www.ida.liu.se/~chrke/fork95/a17.ps)

[15] A. A. Khan, C. L. McCreary, and M. S. Jones, A comparison of multiprocessor scheduling heuristics, In Pro-

ceedings of the 23rd International Conference on Parallel Processing , Aug. 1994.

[16] Yu-Kwong Kwok and Ishfaq Ahmad, Static scheduling algorithms for allocating directed task graphs to multi-

processors, ACM Computing Surveys , 31(4):406�471, December 1999.

[17] A. W. Lim and M. S. Lam, Maximizing parallelism and minimizing synchronization with a�ne partitions,

Parallel Computing, 24(3-4):445�475, 1998.

[18] D. E. Maydan, S. P. Amarasinghe and M. S. Lam, Array data-�ow analysis and its use in array privatization, In

the Proceedings of ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages , Charleston,

South Carolina, January 10-13, pp. 2�15, 1993.

[19] C. L. McCreary, A. A. Khan, J. J. Thompson, and M. E. McArdle. A comparison of heuristics for scheduling

DAGS on multiprocessors. In Proceedings of the 8th International Parallel Processing Symposium , 446-451, April

1994.

27



[20] F. Quilleré, S. Rajopadhye, and D. Wilde, Generation of e�cient nested loops from polyhedra, International

Journal of Parallel Programming , 28(5):469�498, 2000.

[21] S. Ramaswamy, S. Sapatnekar, P. Banerjee. A framework for exploiting task and data parallelism on distributed

memory multicomputers, IEEE Transactions on Parallel and Distributed Systems , 8(11):1098�1116, November

1997.

[22] D.J. Scales and M.S. Lam, An e�cient shared memory layer for distributed memory machines, Computer Systems

Laboratory Technical Report CSL-TR-94-627, Department of Computer Science, University of Stanford, 1994.

[23] B. Shirazi and M. Wang, Analysis and evaluation of heuristic methods for static task scheduling, Journal of

Parallel and Distributed Computing , 10:222-232, 1992.

[24] Split-C, The Computer Science Division, University of California, Berkeley,

http://www.cs.berkeley.edu/projects/parallel/castle/split-c/.

[25] M. Wolfe, High Performance Compilers for Parallel Computing, Addison-Wesley Publishing Co., Redwood City,

CA, 1996.

[26] J. Xue, Loop Tiling for Parallelism, Kluwer Academic Publishers, Boston, MA, 2000.

[27] T. Yang and C. Fu. Heuristic algorithms for scheduling iterative task graphs on distributed memory machines.

IEEE Transactions on Parallel and Distributed Systems , 8(6):608�622, June 1997.

28


