
Towards a Top-Down Approach to Teaching
an Undergraduate Grid Computing Course

Barry Wilkinson
Department of Computer Science

University of North Carolina Charlotte
9201 University City Blvd.
Charlotte, NC 28223 USA

abw@uncc.edu

Clayton Ferner
Department of Computer Science

University of North Carolina Wilmington
601 S. College Rd.

Wilmington, NC 28409 USA
cferner@uncw.edu

ABSTRACT
Early undergraduate Grid computing courses generally took a
bottom-up approach to Grid computing education starting with
network protocols, client-server concepts, creating Web and Grid
services, and then progressing through the underlying Grid
computing middleware, security mechanisms and job submission
all using a Linux command-line interface. We describe a new
approach to teaching Grid computing beginning with a
production-style Grid portal, registration process, and job
submission, and then leading into infrastructure details. We
incorporate seven assignments, several of which require students
to install Grid computing software on their own computer or lab
computers rather than using centralized servers. Students
complete a “capstone” mini-project. Typical projects included
creating a JSR 168 portlet user interface for an application. We
describe our experiences using this new course structure.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems – client/server, distributed applications

General Terms
Design, Experimentation, Security, Human Factors,
Standardization.

Keywords
Grid Computing, Globus, Grid Portal, Undergraduate Education.

1. INTRODUCTION
Grid computing takes advantage of the Internet by using
geographically distributed computers for collaborative problem
solving. In Grid computing, different organizations can supply
resources and personnel, and the Grid infrastructure can cross

organizational boundaries. Grid computing has become an
important concept for high performance computing. This concept
has many benefits including solving problems that could not be
solved previously because of limited computing resources (e.g.
searching for new drugs). Grid computing has found its way into
the permanent Computer Science curriculum at many schools in
the country.

Grid computing entered into Computer Science programs
originally as graduate-level topics courses within a single
department. Subsequently, undergraduate Grid computing courses
were developed. In 2004, we developed an undergraduate Grid
computing course that crosses organizational boundaries using
resources at several North Carolina universities. The course was
broadcast across North Carolina using the televideo facilities of
the North Carolina Research and Education Network. Fourteen
universities and colleges participated included minority-serving
universities, state universities, and private colleges. The course
was first taught in Fall 2004 and again in Fall 2005, and is
described fully in [2,11,12]. We now describe an extensively
revised version of the course with a more top-down approach. The
course now starts with the use of a Grid computing portal, leading
through details of Grid computing infrastructure with seven
hands-on assignments, finally cumulating in small group mini-
projects. The revised course was taught in Spring 2007.

Computer Science courses are often taught with a top-down
approach. This means that the initial viewpoint is from an
overview perspective. As the semester progresses, the lessons
investigate various aspects of the course in more detail. The main
advantage of this approach is that students have a better
understanding of where the course is headed and how the different
parts fit together. However, Grid computing has so far been taught
with a bottom-up approach. Students are first exposed to low-
level details of working with a Grid, such as installing or
configuring middleware, creating user credentials, executing
simple commands, or creating trivial Web or Grid services. Later
in the semester, students will learn about the higher-level
concepts such as file staging, using a portal or workflow editor,
high performance computing, or combining various features of a
Grid into a more complex solution.

We redesigned our course to give students a more top-down
perspective. The design might best be described as alternating
between a high-level view and a low-level detail oriented view.
Students still need to be exposed to low-level details of Grid

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE’08, March 12–15, 2008, Portland, Oregon, USA.
Copyright 2008 ACM 978-1-59593-947-0/08/0003...$5.00.

126

computing fairly early in the semester to give time for them to
deal with more complex concepts. However, we feel that the new
design gives students a new perspective that puts all lessons into a
cohesive context. In this paper, we discuss the design of the
course and our efforts to change the perspective to a top-down
approach.

2. RELATED WORK
One of the first funded projects for teaching Grid computing at
the undergraduate level was an NSF Course, Curriculum, and
Laboratory Improvement (CCLI) project awarded to Bina
Ramamurthy and Bharat Jayaraman in 2003 [6]. This was a
collaborative project between SUNY at Buffalo and SUNY
College at Geneseo. The project resulted in courses being offered
at the advanced undergraduate level from a distributed computer
system perspective beginning with RMI (remote method
invocation). In 2004, NSF funded two further CCLI projects on
undergraduate Grid computing education. In one project,
investigators at the University of Arkansas (Amy Apon) and at
Lewis and Clark College (Jens Mache) developed a collaborative
undergraduate Grid computing course [7]. In the other project,
investigators at UNC-Charlotte (Barry Wilkinson), Western
Carolina University (Mark Holliday), and UNC-Wilmington
(Clayton. Ferner) developed a collaborative undergraduate Grid
computing course [8]. We describe in this paper a continuation of
that project. All previous projects concentrated upon command-
line interfaces and distributed computing techniques [1, 3, 4, 5].

3. COURSE DETAILS
3.1 Student Resources
The course home page, located at
http://www.cs.uncc.edu/~abw/ITCS4146S07/ provided access to
everything the students needed, including more than 800
PowerPoint lecture slides, reading list, assignment instructions,
WebCT for assignment submission and multiple-choice quizzes,
course Grid portal, and streaming video recordings of classes
available to students during the semester. Figure 1 shows a
sample of the streaming video with the three universities that
participated in the course experiment (UNC-Asheville, UNC-
Charlotte, and UNC-Wilmington). Previously, we had many
universities participating in the course, but because of the major
changes we made, we limited participation.

Figure 1. NCREN Streaming video of class

Some new and revised assignments called for students to install
complex Grid computing software on their own computer (or lab
computers) rather than use the main Grid computing systems. Past
experience with students using a central system for software
development was fraught with problems, as we shall describe
later. The software is available for Windows, Linux, and Mac
although all the students in the class of Spring 2007 used
Windows systems. Using personal or lab computers was one of
the successes of the redevelopment. Of course, we had to establish
at the beginning that everyone had access to a computer.

3.2 Assignment 1: Using a Grid Portal
We started the course with an early assignment in the first class
even before getting into the details of Grid computing, which
asked students to register themselves as users using a Grid portal.
Our Grid portal is based upon the Gridsphere toolkit [9], a widely
used portal toolkit in production Grids. A Grid portal provides
single sign-on to all Grid resources, that is, once logged in with a
password, access can be made to reach local and distant resources
without having to supply passwords subsequently. The course
Grid portal is shown in Figure 2.

Figure 2. Main portal login page

We installed the PURSe registration portlet [10], which greatly
simplifies account set-up. Students select the registration tab on
the portal main page, which leads them to the PURSe registration
form shown in Figure 3. They then enter details and request an
account.

Figure 3. Registration portlet

127

New
User

Course on-line
registration

form

System
Administrator Create accounts,

set access control,
sign certif icate, …

Fill in form
Provide
password
and other
information

Contact other
grid resource
administrators if
users requests
account on their
resource

Email request-
acknow ledge
sequence

Figure 4 Registration process

Behind the scenes, a number of activities occur as illustrated in
Figure 4. These activities are somewhat hidden from the students
at this stage. Student will not understand the creation of
credentials (private key and certificate request). Although the
students did not yet understand what is happening for them, they
are becoming oriented to the Grid through the portal interface. It
was important for the students to do these first few steps
immediately so that we could get certificates signed and issued
and they could proceed with the rest of the assignment.

After certificates were signed and placed on the MyProxy server,
students could complete the assignment, again using the portal, by
getting a proxy and submitting a simple job to execute on the
Grid. They test the system with a prewritten job (Linux echo
command). They then write a simple program in Java (factorial
program), compile it to a class file on their own or a lab computer,
which is then uploaded into the server for execution using the
GridFTP portlet within the portal. Hence, students get experience
in using the portal to do some basic tasks.

While the students are working on this first assignment, we
delivered the lectures on an overview of Grid computing,
including topics such as Grid computing concepts, virtual
organizations, computational Grid projects, Grid computing
networks, Grid computing infrastructure, and software
components. Up to this point, the students have been introduced
to the concept of a Grid as a computing resource. They know that
there are machines they can put to use to accomplish some task.
How that happens was still a mystery to them.

3.3 Assignment 2: Using the Grid Through a
Command Line

In the second assignment, students accomplish the same tasks as
in Assignment 1, except that everything is done through the
command line. Students must create a certificate request, submit it
to the Certificate Authority, create a job submission file, and
submit the job to the Globus Grid Resource Allocation and
Management (GRAM). The assignment has not changed
significantly from previous offerings of the course. However, we
still include the assignment to contrast job submission from a
command line interface against a portal interface as well as to
give students a perspective of what the portal is doing for them
under the surface.

In the lectures at this point, we cover the command line interface
approach to Grid computing as well as delivered lectures on
XML, Job Management, Web Services, and Security.

3.4 Assignment 3: Using a Scheduler to Submit
a Job

Next in the course are lectures on schedulers and an assignment
using a scheduler such as Condor or Sun Grid Engine. We used
Condor in Fall 2004 and Sun Grid Engine in Fall 2005. Sun Grid
Engine required a third-party adapter for the Globus Grid
computing software but has a nice GUI interface. For Spring
2007, we returned to Condor as it provides interesting features for
job matching through ClassAd and workflow though DAGMan
and is widely used as a cluster scheduler. There is also a Grid
version of Condor called Condor-G.

In the assignment, students are asked to create a job submission
file and submit a job to the Condor scheduler. It was our intention
that the students be able to submit jobs to the Globus container
through Condor as well as to Condor through Globus, giving them
a view of local versus meta-scheduling, but this was left for a
future offering of the course together with true meta-scheduling.
We did however have a guest speaker later in the course describe
real-life meta-scheduling using Gridway.

3.5 Assignment 4: Installing the GT4 Core and
testing a simple GT4 Grid service

The next part of the course is a return to the low-level details of
creating a Grid service, which is a key aspect of recent of Grid
middleware. We delivered lectures on concepts such as Globus
4.0 Grid services, using Web services for Grid computing, stateful
Web services, Grid computing standards, Open Grid Services
Architecture (OGSA), Web Services Resource Framework
(WSRF), programming GT 4.0 Grid services, and the GT 4.0
container. Students are given an assignment to create, build, and
deploy a Grid service, then use the Grid service by creating,
building, and using a client.

In previous offerings of the course, this assignment was done
earlier in the course and required students to use one of the
servers at their institution. However, this did not work out well.
The original Grid service assignment required students to create
their own Grid service, which requires a Grid service container
host. Using one container (or multiple containers operating on
different ports) requires all students’ services to be uniquely
named, which was done previously by running a script that
renamed student services. When a student needed to modify and
re-deploy the service, it was necessary to restart the container to
see the service. Students would do this many times and re-
deployment would affect all students using the same container. It
was easily possible to overload or crash the system. Asking
students to do the service development on their personal
computers eliminated such problems. However, students needed
to install the Globus core and associated software to do this work.

The software required for Spring 2007 was JDK 1.4.2+, Ant
1.5.1+, Python 2.4+, and Globus 4.0 core. Installing the software
is quite easy to do although many students had not downloaded
and installed such software before. The software required more
low-level work than most Windows software they had installed.
They had to obtain packages from different sources and set

128

environment variables and paths. Once installed, students needed
to issue commands at a Windows command prompt.

We did provide a version of the assignment that used a server
(basically the 2004/2005 assignment) as a backup plan for those
students that might not be able to install the software, but all of
the students managed to install the software on Windows
computers. (None of the students in the Spring 2007 class used
Linux or a Mac although they could have done so.)

3.6 Assignment 5: Using GridNexus to Create
Workflows that use Web and Grid Services

We returned to user interfaces in the next phase of the course and
gave the students an assignment where they have to interact with
Web services and submit jobs using a workflow editor. In this
assignment, the students are asked to install the GridNexus
workflow editor software and create workflows that would use
Web and Grid services. Although the students used personal
computers for GridNexus, the software functions as the client to
services on a Grid machine. We wanted to have students use
GridNexus to interact with the Grid service that they themselves
built and deployed but this would be difficult for students who
were not successful with Assignment 4. It is desirable to have
each assignment be as self-contained as possible. Therefore, we
provided the services the students could use in this assignment.

After configuring GridNexus to work with the services, students
are asked to create workflows that created service instances, make
use of them to accomplish some task, and then destroy the service
instances. Students are also asked to submit a job to run on a
remote machine using the workflow editor through the Globus
GRAM. They could then contrast this job submission with using a
Portal (Assignment 1), using a command line (Assignment 2), and
using a scheduler (Assignment 3). Similar to a Portal, GridNexus
will hide many of the low-level steps necessary to submit a job
such as the construction of the job submission file.

3.7 Assignment 6: Portlet Design
This was a completely new assignment for Spring 2007 in
keeping with introducing a higher-level interface to students. It
also required students to use their own computer. Students are
asked to create, build, deploy, and use a portlet inside a portal
container that they installed. It is necessary for them to install
GridSphere and other software (such as ANT and Tomcat). After
successfully installing and running the container and GridSphere,
students then had to create a prewritten JSR 168 portlet, build it,
deploy it in GridSphere, and then code their own portlet. Figure 5
shows a sample student portlet as a front-end to a simple math
program.

Figure 5. Student Math Portlet

This may not look difficult, but it requires student to understand,
code, and deploy a JSR 168 portlet. They have to write the
underlying Java math program, which calls a JSP file (Java Server
Pages) and modify several deployment descriptor XML files, get
it to work, and write up the work in a report, all in a week or so
(including installing the software).

3.8 Assignment 7: MPI Assignment
At this stage in the course, we move on to parallel computing
using MPI and high performance computing. Students are given
an assignment to create a parallel program using MPI, build it,
and submit it for execution on the Grid. In Assignment 7, students
are asked to create MPI programs to implement matrix
multiplication and dot product. (Students could install MPI on
their own computer for code development if they wished although
we are not aware of any who did.) We were only able to spend a
few lectures on parallel computation, so we could not ask them to
implement anything more complicated. Furthermore, the
communication latencies between geographically distant
processors are too large to make it feasible to employ parallel
computation that requires a significant amount of communication.
Applications that are suitable for parallel execution on a Grid
include such things as “embarrassingly parallel” applications and
Monte Carlo applications. However, an assignment such as this
one only introduces the students to the possibilities that parallel
execution promises as well as the elusiveness of speedup.

3.9 Mini-project
The mini-project was also new for Spring 2007. Students worked
in teams of three students. Each team is given the objective of
creating a new Grid computing assignment that builds upon the
previous assignments and concepts learned in the class, and
produce an assignment write-up with the solution. The assignment
should involve the creation of a Grid computing application
combined with a graphical interface such as a workflow editor or
a portal. Note the requirement of a high-level user interface. We
provided students with a list of possible mini-project ideas, but
they could design their own assignment. Whichever they chose,
they had to present a single page write-up describing the idea for
our approval by a published date, after which they could start in
earnest. Students are asked to design the work as a class
assignment that could be given to their classmates. We did this so
that we might use their mini-projects as actual assignments in
future classes. Furthermore, this requirement would give students
a way to focus on the dissemination of the project. Finally,
student teams had to prepare a report written as a class assignment
and present to the class a 10-minute presentation of what they did,
what they accomplished, and what they learned.

While students were working on their mini-projects, we invited
three expert guests who are working on real-world Grid projects
to give presentations on those projects. These presentations gave
students an appreciation that Grids are more than just
experimental systems.

4. EXPERIENCES
Our experiences have been very positive. It does require immense
work to prepare for a hands-on Grid computing course. It is
critical that all assignments are fully tested prior to the start of
class and that all computer systems are reliable and the software
maintained. The assignments went much smoother by requiring

129

students to use personal computers when possible. Students
responded positively to using their own computers that were
under their direct control. Some students did have problems with
their installations but nothing that could not resolved quickly such
as not setting paths or using the wrong version of the software. In
one case, using a most recent version of JDK (1.6 instead of the
versions it was tested on: JDK 1.4.2 and JDK 1.5) turned out to be
incompatible. Certainly some Grid computing assignments still
have to be done on a Grid platform, such as submitting and
scheduling jobs, but using personal computers where possible
simplifies code development. Thankfully, we did not experience
any students causing catastrophic system problems with installing
the software on their personal computer although we warned
students to checkpoint their system prior to installation. Most lab
machines were installed with Deep Freeze that insured students
would not cause them to be inoperable. The only downside of
using Deep Freeze is that the students had to complete their
assignment in one sitting or repeat the installation.

In Spring 2007, we had increased the number of assignments from
four to seven and added a mini-project so it was critical that no
one got behind with assignments in the 15-week semester. Each
assignment was allocated 1-2 weeks to complete (3 weeks for
mini-project). As with the Fall 2005, we posted three dates for
each assignment, a date the assignment was set, a date that
students had to report any system problems that were preventing
them from proceeding with the assignment (roughly 3-4 days after
the date set) and a date the assignment was to be submitted. The
date to report system problems required students to start the
assignment immediately. It turned out that in Spring 2007, no one
reported systems problems and each assignment could move
forward on schedule.

5. CONCLUSIONS
In this paper, we describe a new version of a geographically
distributed undergraduate Grid computing course, which uses a
more top-down approach, and starts with production-style Grid
computing portal. We also introduced JSR 168 portlet design and
a mini-project that brought together the materials in the course.
Our new course calls for students to install some complex
software on their own computer or lab computers in order to do
some assignments. This approach significantly reduces the
problems of a class attempting Grid computing work on a
centralized server, especially Grid service code development.

6. ACKNOWLEDGMENTS
This material is based upon work supported by the National
Science Foundation under Grant No. 0533334. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the
views of the National Science Foundation. We wish to thank our
teaching assistants at UNC-Charlotte, Jeremy Villalobos and
Jasper Land who were responsible for maintaining the Grid
platform and assisted in the development of the assignments. We
very much appreciated Dr. Dean Brock, the chairman of the
Department of Computer Science at UNC-Asheville who was in
attendance at lectures and served as the faculty contact at UNC-

Asheville. We also appreciate all the students in the Grid
computing class of Spring 2007 who helped make the course a
success. Class member Aurora Cain did the student portlet design
shown in Figure 5.

7. REFERENCES
[1] Apon A., Mache J.,Yara Y., and Landrus K., Classroom

exercises for grid services, Proceedings of the Linux Cluster
Institute International Conference on High Performance
Computing, Austin, Texas, May, 2004.

[2] Holliday M.A., Wilkinson B., House J., Daoud S., Ferner C.,
Geographically-distributed, assignment-structured
undergraduate grid computing course, in The 36th ACM
Technical Symposium on Computer Science Education
(SIGCSE2005), St. Louis, Missouri, pp. 206-210, February
23-27, 2005.

[3] Mache, J., and Apon, A., Grid computing in the
undergraduate classroom topics, exercises and experiences,
Cluster Computing and the Grid 2005 (CCGrid), vol. 1, pp.
67- 73, May 2005.

[4] Mache, J., and Apon A., Teaching grid computing: topics,
exercises, and experiences, IEEE Transactions on Education,
Vol. 50, No. 1, pp. 3-9, Feb. 2007.

[5] Mache, J., Hands-on grid computing with Globus Toolkit 4,
Journal of Computing Sciences in Colleges, Vol. 22, No. 2,
pp. 99 – 100, Dec. 2006.

[6] National Science Foundation grant, “Collaborative: A Multi-
Tier Model for Adaptation of Grid Technology to CS-based
Undergraduate Curriculum,” ref. DUE # 0311473, PI: B.
Ramamurthy, co-PI: B. Jayaraman, 2003-2006.

[7] National Science Foundation grant, “Collaborative Project:
Adaptation of Globus Toolkit 3 Tutorials for Undergraduate
Computer Science Students,” ref. DUE #0410966/#0411237,
PIs: A. Apon and J. Mache, 2004-2007.

[8] National Science Foundation grant, “Introducing Grid
Computing into the Undergraduate Curricula,” ref. DUE
#0410667/0533334, PI: A. B. Wilkinson, co-PI M. Holliday,
2004-2007.

[9] The OGCE Portal Toolkit. http://www.collab-
ogce.org/ogce2/

[10] PURSe: Portal-based User Registration Service.
http://www.grids-center.org/solutions/purse/

[11] Wilkinson, B., and Ferner, C., Teaching grid computing in
North Carolina: Two part series, IEEE Distributed Systems
Online, vol. 7, no. 6&7, 2006, art. nos. 0606-o6003 and
0607-o7003.

[12] Wilkinson B., Holliday M., and Ferner C., Experiences in
teaching a geographically distributed undergraduate grid
computing course, Proceedings of The Second International
Workshop on Collaborative and Learning Applications of
Grid Technology and Grid Education (Held in conjunction
with CCGrid2005), May 9 - 12, 2005, Cardiff, United
Kingdom.

130

