

The Paraguin Compiler—Message-passing Code Generation
Using SUIF

Clayton S. Ferner; University of North Carolina at Wilmington; Wilmington, NC

Keywords: Parallelizing compilers, Parallel/Distributed systems, Open-source, Message-passing

ABSTRACT

In this paper, we introduce the Paraguin project at the
University of North Carolina at Wilmington. The goal of the
Paraguin project is to build an open source message-passing
parallelizing compiler for distributed-memory computer
systems. We discuss the progress we have made in developing
this compiler as well as mention the parts that have not yet
been developed. It is our intent that, by providing an open
source compiler, we will stimulate research in automatic
message-passing parallelism and encourage collaboration.

We demonstrate a technique to improve the performance of
a message-passing program by overlapping communication
with computation. Although the original concept was
introduced in previous work [1], the algorithm was not
developed nor shown to provide benefit. Our preliminary
results indicate that the technique does significantly improve
the performance. We were able to reduce the running time of
our test program by 4 to 65 percent.

1. INTRODUCTION

Beowulf-class clusters of computers are becoming more and
more popular every year. These clusters are inexpensive
computer systems capable of parallel computation. The
philosophy behind Beowulf clusters is that they can be built
from low cost, off-the-shelf components. This allows small
companies or departments to build their own high
performance parallel computer system. Unfortunately, there
are not many options available to a user of a Beowulf system
for automatically generating parallel code.

The scientific community spends much time learning how to
use parallel systems and how to program in parallel. This is
time that is not spent on the particular problems the user needs
to solve. Parallelizing compilers represent one option for the
scientific programmer who does not wish to also become a
computer scientist. However, most parallelizing compilers
today will generate parallel code that assumes a shared-
memory model of the underlying system. There are only a few
that can generate message-passing code that can be run on a
Beowulf without the aid of a Distributed-Shared Memory
(DSM) library. A few compilers that we found that claim to
do this are: Paradigm, VAST-HPF, Bert 77, and PGI CDR-16.
Not only is the list short, but also the purchase of one of these
compilers will represent a large percentage of the cost of the
entire system. This does not seem to fit well with the
philosophy of a Beowulf cluster.

Fortunately for users of distributed systems, a DSM library,
such as Treadmarks [2] or SAM [3], will allow parallel code
written for a shared-memory model to be run on a distributed-
memory system. The DSM packages have alleviated the
message-passing and scheduling concerns for both the user
and the compiler. There are also compilers that provide a
global addressing model to the user, such as Olden [4] or
Split-C [5]. However, the abstraction created by the DSM
library is a source of inefficiency [6,7]. The paper by Cox, et.
al. [6] showed several examples of regular programs where
the compiler-generating message passing solution
outperformed the DSM solution. Although DSMs create a
convenient abstraction, they are not necessary the best option.

The research for shared-memory systems is more advanced
than that for distributed-memory. There are several reasons
for this. First, parallel computation for distributed-memory
systems appears to be more complex than for shared-memory.
Second, DSMs have given users another option other than
using a parallelizing compiler to generate message-passing
code. Third, the lack of open-source parallelizing compilers
has hindered research in automatic parallelization for
distributed-memory. If someone wishes to conduct research in
this area, there are few open source compilers from which
they can start. As a result, much of the work done in this area,
such as static scheduling heuristics, has used simulation or a
small number of inputs. The Suif compiler [8] from Stanford
University is an example of the benefit of having an open-
source compiler. Much research has been conducted using
Suif as the base compiler, not only at Stanford but also around
the world. This has been very beneficial for advancing
compiler technology. Smaller research institutions, that do not
have the resources of a school like Stanford, can now conduct
research in compiler technology without making the enormous
investment of building the infrastructure.

This paper presents a progress report from a project called
Paraguin at the University of North Carolina at Wilmington.
We are building an open-source message-passing automatic
parallelizing compiler based on the Suif compiler. The goal of
this paper is three-fold: we would like to raise awareness of
the Paraguin project and hopefully stimulate interest as well as
collaboration, discuss where we are in the project and where
we need to go, and present some preliminary results on work
to overlap communication with computation.

The rest of this paper is organized as follows: Section 2
gives an overview of the project and discusses the background
of message-passing code generation, Section 3 describes the

0-7803-7252-2/02/$10.00 © 2002 IEEE Proceedings IEEE SoutheastCon 2002
1

work we have done to overlap communication with
computation, Section 4 presents some results, and Section 5
provides some concluding remarks.

1.1. Notation r T
niii],,[1 K= vector of loop indices

p virtual processor or partition

wr pp , virtual processor for receiving and sending

ii ublb , lower and upper bounds for loop i

),,,(1 niicf K affine function of loop indices and
symbolic constants

2. BACKGROUND

2.1. Overview of the Paraguin Project
The Paraguin Project is a compiler pass written using Suif

version 1.3. It will generate a program in C with calls to the
MPI library [9] to send and receive data between processors.
The work that we have done is largely based on work
presented by Amarasinghe and Lam [1]. The reason we must
reproduce much of that work is because their compiler pass is
no longer available. However, we do present new work in this
paper that was not given by Amarasinghe and Lam. The work
they presented shows how to build a system of linear
inequalities from a loop nest, given the computation
decomposition (mapping of iterations to processors) and the
exact data-flow analysis. This system is then used to generate
a loop nest for each read array access to receive and unpack a
message from the processor that generated that value. It is also
used to generate a loop nest for each write array access to
pack and send a message to the processors that need it.
Amarasinghe and Lam assume that the computation
decomposition and the exact data-flow analysis are given.

We have also implemented in our compiler pass the
construction of this system of linear inequalities and the
generation of the Receive and Send loop nests. However, we
have not yet implemented the data decomposition and the
exact data-flow analysis. For the results presented in this
paper, we have provided this information to the compiler by
means of pragma statements in the source code. The dataflow
analysis is a well-studied problem, and we plan to implement
this so that the compiler can automatically perform as much of
this analysis as possible. However, in the case of irregular
loop nests, we will require the user to provide the dataflow
analysis to assist the compiler in generating efficient code.

We expect the data decomposition should be provided in a
later version of Suif. Work done by Lim and Lam [10] shows
how to take a loop nest as input and determine the
computation decomposition that provides the maximum
degree of parallelism while minimizing the degree of
synchronization. They also show that this decomposition
provides the coarsest granularity. Lim and Lam make the
claim that their algorithm “[...] subsumes previously proposed
loop transformation algorithms that are based on unimodular
transformations, loop distribution, fusion, scaling, reindexing
and statement reordering.” [10, p. 445]. The promise of this
research is great, and we hope that, when this is available, we

can then generate message-passing code that is much more
efficient than was previously possible with a parallelizing
compiler.

2.2. Message-Passing Code Generation
The algorithm to generate message-passing code is

described in detail in [1]. We will only mention briefly how
the algorithm works. Suppose we have a loop nest such as that
shown in Figure 1, which contains read and write accesses to
some array. The domain of our input programs is limited to
loops whose bounds and array accesses are affine functions of
the symbolic constants and the loop indices of outer loops, as
is done in the research upon which our work is based. The
i eration space of the loop nest is spanned by the vector t

T
niii],,[1 K

r
= . The iterations will be mapped to virtual

processors (or partitions), designated by p. This mapping is
called the computation decomposition. The virtual processors
will later be mapped to physical processors. Our compiler can
support either cyclic or block mapping of virtual to physical
processors.

for i = l to 1)(1 c)(1 cu
 for = to u 2i),(12 icl),(12 ic
 ...
 for = to u ni),,,(11 −nn iicl K),,,(11 −nn iic K
 ...
 ... = ... X[] ...),,,(1 niicf K

 X[] = ...),,,(1 niicg K
 ...

Figure 1: Example Loop Nest

We use ri
r

 to denote the iteration instance of a statement that

contains a read access for a particular array value and wi
r

 to
denote the iteration instance of a statement that contains a
write access for a particular array value. We also use pr nd pw
to denote the virtual processor to which i

a

r

r
 and wi

r
 are

mapped. A read access for iteration i can be mapped to the

exact iteration i
r

r

w

r
 where the write access generated the value

used. This mapping is provided by a structure known as the
Last Write Tree (LWT) [11].

The original loop nest is transformed into a SIMD or MIMD
code by creating a system of linear inequalities that represent
the loop bounds for i

r
 and the computation decomposition.

The new loop nest is generated using the algorithm from [12]
based on Fourier-Motzkin elimination. We will refer to the
transformed loop nest as the Execution loop nest (as opposed
to the Send and Receive loop nests). The outermost loop of the
Execution loop nest will have an index of p, such as the
second loop nest shown in Figure 2. The p loop will later be
turned into an if statement of the form: if (lb0<= p && p <=
ub0). This will then be placed inside another loop, where p
will iterate over all the virtual processors that are mapped to
the physical processor number mypid.

Proceedings IEEE SoutheastCon 2002
2

/* Receive Loop Nest */
for = to rp

0r
lb

0r
ub

 for i = lb to ub
1r 1r 1r

 ...
 for i = to ub

nr nrlb
nr

 for = lb to ub { wp
0w 0w

 receive packet from processor wp
 for = lb to

1wi 1w 1wub
 ...
 for i = lb to ub

nw nw nw

 unpack (X[])),,,(
1 nww iicf K

 }

/* Execution Loop Nest */
for = lb to ub p 0 0

 for i = lb to ub 1 1 1
 ...
 for i = to ub n nlb n
 ...
 ... = ... X[] ...),,,(1 niicf K

 X[] = ...),,,(1 niicg K
 ...

/* Send Loop Nest */
for = lb to ub wp

0w 0w

 for i = to ub
1w 1wlb

1w

 ...
 for i = lb to ub

nw nw nw

 for = lb to ub { rp
0r 0r

 for = lb to ub
1r

i
1r 1r

 ...
 for i = lb to ub

nr nr nr

 pack (X[])),,,(
1 nrr iicg K

 send packet to processor rp
 }

Figure 2: Before Overlapping Communication with
Computation

For each read access to array location X[f(c,i1,…,in)], we can
generate a loop nest that will receive and unpack the data from
the processor that created the value, such as the first loop nest
shown in Figure 2. This is done by building a system of linear
inequalities from the loop bounds, the LWT mapping, the
computation decomposition for i

r
 and ir w

r
, and the constraint

pr ≠ pw. The loop nest is then generated from this sys em, such
that the order of the loop indices is (

t
),,, wwrr ipip

rr
, from

outermost to innermost. The body of the loop nest is the
statement to unpack the data. The statement to receive the
packet is placed immediately following the determination of
pw. We will refer to this loop nest as the Receive loop nest.

The Send loop nest for each write access to array location
X[g(c,i1,…,in)] is generated is a similar fashion, except that the
loop indices are ordered (

rr
, from outermost to

innermost. The body of the loop nest is the statement to pack
the data. The statement to send the packet is placed at the end
of the pr loop body. We will refer to this loop nest as the Send
loop nest. Many of the innermost loops will be degenerate
loops (containing only one iteration). By definition, the pw and

),,, rrww ipip

wi
r

 loops of the Receive loop nest will be degenerate. The
degenerate loops are later replaced by simple assignment
statements.

3. OVERLAPPING COMMUNICATION WITH
COMPUTATION

When the Receive loop is generated from an Execution loop,
it will be a loop nest representing for the vector

. We replace the pr and T
wwwrrr nn

iipiip],,,,,,,[
11
KK ri

r
 loop

indices with p and i
r

. Similarly, the send loop represents the
vector . We replace the pw and T

rn
i],rrwww n

ipiip ,,,,,,[
11
KK

wi
r

 loop indices with p and i
r

. This causes the Receive, Send,
and Execution loops to have the same indices for the
outermost loops. This will allow us to combine the loops such
that the loop bodies that are executed with the same values for
p and i

r
, will be inside a single loop.

Figure 3 shows an example of loop nests that can be merged
so that the communication overlaps with the computation.
Notice that the outermost loops have the same loop index. The
intersection of these iterations is [2 … N -1]. We take the
three loop bodies and put them inside a new loop that iterates
across this intersection, as shown in Figure 4. Then we need to
insert new loops for the iterations that are left over.

for ik = 2 to N
 Receive Loop Body
for ik = 1 to N
 Execution Loop Body
for ik = 1 to N-1

Send Loop Body
Figure 3: Example of Loops That Can be Merged

for ik = 1 to 1
 Execution Loop Body
 Send Loop Body
for ik = 2 to N - 1
 Receive Loop Body
 Execution Loop Body
 Send Loop Body
for ik = N to N
 Receive Loop Body

Execution Loop Body
Figure 4: After Merging Loops

The advantage of this is that we can overlap communication
with computation. The reason it is legal to do this is because

Proceedings IEEE SoutheastCon 2002
3

the iteration instance i of the Receive loop nest that
generates he array value X[f(c,i1,…,in)], used during it ration
instance

r

r

t e
i
r

 of the Execution loop nest is such that iir
rr

= .
Likewise for the Send loop nest. We can then merge the loops
within these loops recursively to further improve performance.

Amarasinghe and Lam mentioned merging these loop nests.
However, they did not provide any details of how it was
implemented and whether it proves to be a useful technique.
We provide an algorithm in this section that attempts to merge
the Receive, Execution, and Send loop nests when it is
possible to do so. We also provide some preliminary results
that indicate that it can provide an improvement in
performance.

The algorithm shown in Figure 5 is our algorithm to merge
the loops. It should be applied to the loop nests after
renaming the outermost loops indices to p and i

r
, but before

translating the p loop to an if statement. This is a greedy
algorithm, in the sense that it tries to find the first set of loops
for which there is an intersection of iterations. M is used for
the system of inequalities that represents the loop bounds of
the current intersection. combLoops and Body are used to
store the loops and their respective bodies that are in the
current intersection. The algorithm steps currentLoop
through the list of for loops (line 8). If the iterations of the
currentLoop also intersect with the iterations in M, then it
is added to the intersection (lines 10-14). Once we find a loop
that does not intersect or has a different index, then we will
either start over with the current loop, if the intersection is
only a single loop (lines 16-21), or we will merge the loops in
combLoops.

Once we have a set of loops whose iterations intersect, we
will then proceed to merge these (lines 23-43). We create a
new loop L, whose bounds satisfy the constraints of M and
whose body is Body, and insert this into the code (lines 24-
27). We then remove the loops that are being merged (line
29). Next we need to insert loops for the iterations that are left
over. This is done by taking each of these loops and checking
to see if its set of iterations intersects with the inverse of the
bounds of L (i.e. index < lb or index > ub). If it does
intersect with either of these, then there are iterations that are
not included in L. Therefore we must add a new copy of this
loop with the remaining iterations (lines 30-37). After we have
merged a set of loops, we start currentLoop from the
beginning (lines 39-43).

We stop this process when we cannot find any consecutive
loops in the list of loops that have any common iterations (line
47). Then we recursively attempt to merge the inner loops
(lines 48-49), as long as the bodies are lists of for loops only
whose indices are the same variable.

4. RESULTS

We ran our compiler pass on the LU decomposition kernel
shown in Figure 6. This is the same program segment that
Amarasinghe and Lam used to demonstrate their compiler
pass. The mapping of virtual processors to physical processors
was done using a block mapping. After the Send and Receive

loop nests are generated, the entire set of loops is placed
inside a loop that maps the virtual processors to physical.

The two resulting programs (before and after merging the
loops) were then compiled with a native compiler, linked with
the MPI library, and run on the Beowulf cluster at UNCW.
This Beowulf cluster consists of twelve dual-processor 1 GHz
Pentium III processors, connected together by a 10/100 Fast
Ethernet switch. The head machine has 512 Mbytes of
memory and 75 Gbytes of disk space, and the client machines
each have 256 Mbytes of memory and 30 Gbytes of disk
space. We also ran these programs on an IBM RS/6000 SP at
the North Carolina Supercomputing Center, which has 180
Winterhawk II nodes, each of which has four 375 MHz Power
3 processors, 2 Gbytes memory, 8 Mbytes L2 cache, and 64
Kbytes L1 cache.

Figure 7 shows the running times of these programs on the
Beowulf cluster with a matrix size of 256x256. Overlapping
the communication with computation by combining the loops
in the manner that we described previously produced a
significant improvement in performance. The improvement
ranges between approximately 5 and 65 percent. The results
for the IBM SP are shown in Figure 8. We were not able to
run with a larger input size than 150x150, because the
message buffers for MPI on that system are set so that we
could not send very large packets. The results for the IBM
range from 4 to 22 percent.

Although showing the results from one sample program
does not prove that our algorithm always improves the
performance, we present this data to suggest that this
technique can make a difference. We do not yet know if this
technique or the compiler can produce similar results on other
types of problems. Our experience tells us that we will find
that the compiler will work well for some problems (or
problem domains) and poorly for others. We emphasize that
this work is only preliminary. More experimentation is
needed. However, the results presented here provide the
motivation to continue this research.

5. CONCLUSIONS

Distributed-memory computer systems are increasing in
popularity. However users of these systems must either write
programs with explicit message-passing calls or use a
Distributed Shared Memory (DSM) library. Although DSMs
provide a convenient abstraction, Cox, et. al. [6] have shown
that a compiler generated message-passing program can
outperform the shared-memory version of the same program
running with a DSM. This means that DSMs should not be the
only option for the user.

Unfortunately, compiler technology for distributed-memory
computer systems has lagged behind the technology for
shared-memory computer systems. The reason is three fold:
distributed-memory parallelism is more complex, there is a
lack of open source parallelizing compilers that can generated
message-passing code, and DSMs have given users another
choice. In this paper, we introduced the Paraguin project at
the University of North Carolina at Wilmington. The goal of

Proceedings IEEE SoutheastCon 2002
4

 Input: InLoops : List of for loops
 Output: List of merged for loops
 Let: M, c1, c2 : set of inequalities
 combLoops : list of for loops
 Body : list of instructions
 currentLoop, loop, L : for loop
 index : loop index variable
 lb, ub : expression

1 Repeat
2 M ← Ø
3 combLoops ← null
4 Body ← null
5 currentLoop ← InLoops.first()
6 index ← currentLoop.index ()
7
8 While (NOT currentLoop.isPastEnd()) do
9
10 If index = currentLoop.index() AND (M = Ø OR currentLoop.bounds() ∩ M ≠ Ø) then
11 M ← M ∪ currentLoop.bounds() /* Add this loop to the intersection */
12 combLoops.append(currentLoop)
13 Body.append(currentLoop.body())
14 currentLoop ← currentLoop.next()
15
16 Else if | M | ≤ 2 then /* M contains bounds for only 1 for loop, so start over */
17 M ← currentLoop.bounds()
18 combLoops ← currentLoop
19 Body ← currentLoop.body()
20 index ← currentLoop.index()
21 currentLoop ← currentLoop.next()
22
23 Else /* Merge the current set of loops */
24 lb ← makeLowerBound(M)
25 ub ← makeUpperBound(M)
26 L ← new ForLoop(index, lb, ub, Body)
27 InLoops.insertBefore(L, currentLoop)
28
29 For each loop ∈ combLoops do InLoops.remove(loop)Endfor
30 For each loop ∈ combLoops do
31 c1 ← loop.bounds() ∩ (index < lb)
32 c2 ← loop.bounds() ∩ (index > ub)
33 If | c1| ≠ 0 InLoops.insertBefore(new ForLoop(index,
34 makeLowerBound(c1), makeUpperBound(c1), loop.body()), L)
35 If | c2| ≠ 0 InLoops.insertAfter(new ForLoop(index,
36 makeLowerBound(c2), makeUpperBound(c2), loop.body()), L)
37 Endfor
38
39 M ← Ø
40 combLoops ← null
41 Body ← null
42 currentLoop ← InLoops.first()
43 index ← currentLoop.index ()
44
45 Endif
46 Endwhile
47 Until M = Ø
48 For each loop ∈ InLoops do
49 Recursively apply this algorithm to loop.body()
50 Endfor
51 Return InLoops

Figure 5: Algorithm to Merge Loop Nests

Proceedings IEEE SoutheastCon 2002
5

for (i1 = 0; i1 <= N; i1++)
 for (i2 = i1 + 1; i2 <= N; i2++)
 X[i2][i1] /= X[i1][i1];
 for (i3 = i1 + 1; i3 <= N; i3++)
 X[i2][i3] -= X[i2][i1] * X[i1][i3];
 }

Figure 6: Sequential Version of LU Decomposition

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25
Number of Processors

R
un

ni
ng

 T
im

e
(s

ec
)

Before Merging
After Merging
Perfect Relative Speedup

Figure 7: Results from the Beowulf Cluster. Input size is

256x256.

0

1

2

3

4

5

6

0 20 40 60
Number of Processors

R
un

ni
ng

 T
im

e
(s

ec
)

80

Before Merging
After Merging
Perfect Relative Speedup

Figure 8: Results from the IBM SP. Input size is

150x150.

the Paraguin project is to build an open source message-
passing parallelizing compiler for distributed-memory
computer systems. We have discussed the progress we have
made in developing this compiler and mention the parts that
have not yet been developed. It is our intent that, by providing
an open source compiler, we will stimulate research in
automatic message-passing parallelism and encourage
collaboration.

We demonstrated a technique to improve the performance
of the resulting program by overlapping communication with
computation. Although this concept was introduced in
previous work [1], the algorithm was not developed nor
shown to provide benefit. Our results indicate that the
technique does significantly improve the performance.
However, these results are only preliminary. Further

experimentation is needed. These results indicate that our
technique has merit, and that we should continue our
investigations.

6. ACKNOWLEDGEMENTS

I would like to thank the North Carolina Supercomputing
Center for providing access and time to their IBM SP. I
would also like to thank UNCW and the Department of
Computer Science for providing the Beowulf cluster.

REFERENCES
1. S. P. Amarasinghe and M. S. Lam, “Communication optimization and

Code Generation for distributed memory machines,” In the Proc. of The
ACM SIGPLAN '93 Conference on Programming Language Design and
Implementation (PLDI), Albuquerque, June 1993, pp. 126-138.

2. C. Amza, A.L. Cox, S. Dwarkada, P. Keleher, H. Lu, R. Rajamony, W.
Yu, and W. Zwaenepoel, “TreadMarks: Shared memory computing on
networks of workstations,” IEEE Computer, vol. 29, no. 2, Feb. 1996,
pp. 18-28.

3. D.J. Scales and M.S. Lam, “An efficient shared memory layer for
distributed memory machines,” Computer Systems Laboratory Technical
Report CSL-TR-94-627, Department of Computer Science, University of
Stanford, 1994.

4. M.C. Carlisle and A. Rogers. “Software caching and computation
migration in Olden.” In Proc. of the Fifth ACM SIGPLAN Symp. on
Principles & Practice of Parallel Programming, Santa Barbara, Calif.,
July 1995, pp. 29-38.

5. Split-C, The Computer Science Division, University of California,
Berkeley, http://www.cs.berkeley.edu/projects/parallel/castle/split-c/.

6. A. L. Cox, S. Dwarkadas, H. Lu, and W. Zwaenepoel, “Evaluating the
performance of software distributed shared memory as a target for
parallelizing compilers,” In the Proc. of the 11th International Parallel
Processing Symposium, Geneva, Switzerland, Apr. 1997, pp. 475-482.

7. P. J. Keleher, “Update Protocols and cluster-based shared memory,”
Computer Communications, vol. 22, no.11, July 1999, pp.1045-1055.

8. M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S.-W.
Liao, E. Bugnion and M. S. Lam, “Maximizing multiprocessor
performance with the SUIF compiler,” IEEE Computer, vol. 29, no. 12,
Dec. 1996, pp. 84-89.

9. P. Pacheco, Parallel Programming with MPI, Morgan Kaufmann
Publishers, 1996.

10. A. W. Lim and M. S. Lam, “Maximizing parallelism and minimizing
synchronization with affine partitions,” Parallel Computing, vol. 24, no.
3-4, 1998, pp. 445-475.

11. D. E. Maydan, S. P. Amarasinghe and M. S. Lam, “Array data-flow
analysis and its use in array privatization,” In the Proceedings of ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, Charleston, South Carolina, Jan. 1993, pp. 2-15.

12. C. Ancourt and F. Irigoin, “Scanning polyhedra with DO loops,” In the
Proceedings of third ACM SIGPLAN Symposium on Principles &
Practice of Programming Languages (PPOPP), Williamsburg, Virginia,
Apr. 1991, pp. 39-50.

BIOGRAPHIES
Clayton S. Ferner
Department of Computer Science
University of North Carolina at Wilmington
601 S. College Rd.
Wilmington, NC 28403 USA

e-mail: cferner@uncwil.edu

Clayton Ferner is an Assistant Professor in the Department of Computer
Science at the University of North Carolina at Wilmington. His research
interests are parallel computing, compilers for parallel and distributed
computing, and networks. Before joining the faculty at UNCW, Ferner was a
member of the Technical Staff at Lucent Technologies. Ferner holds and MS
and Ph.D. in Computer Science from the University of Denver. Ferner is a
Member of IEEE and ACM.

Proceedings IEEE SoutheastCon 2002

6

	Presentation
	Technical Sessions

