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ABSTRACT 

In this paper, we introduce the Paraguin project at the 
University of North Carolina at Wilmington. The goal of the 
Paraguin project is to build an open source message-passing 
parallelizing compiler for distributed-memory computer 
systems. We discuss the progress we have made in developing 
this compiler as well as mention the parts that have not yet 
been developed. It is our intent that, by providing an open 
source compiler, we will stimulate research in automatic 
message-passing parallelism and encourage collaboration.  

We demonstrate a technique to improve the performance of 
a message-passing program by overlapping communication 
with computation. Although the original concept was 
introduced in previous work [1], the algorithm was not 
developed nor shown to provide benefit. Our preliminary 
results indicate that the technique does significantly improve 
the performance. We were able to reduce the running time of 
our test program by 4 to 65 percent. 

1. INTRODUCTION 

Beowulf-class clusters of computers are becoming more and 
more popular every year. These clusters are inexpensive 
computer systems capable of parallel computation. The 
philosophy behind Beowulf clusters is that they can be built 
from low cost, off-the-shelf components. This allows small 
companies or departments to build their own high 
performance parallel computer system. Unfortunately, there 
are not many options available to a user of a Beowulf system 
for automatically generating parallel code.  

The scientific community spends much time learning how to 
use parallel systems and how to program in parallel. This is 
time that is not spent on the particular problems the user needs 
to solve. Parallelizing compilers represent one option for the 
scientific programmer who does not wish to also become a 
computer scientist. However, most parallelizing compilers 
today will generate parallel code that assumes a shared-
memory model of the underlying system. There are only a few 
that can generate message-passing code that can be run on a 
Beowulf without the aid of a Distributed-Shared Memory 
(DSM) library. A few compilers that we found that claim to 
do this are: Paradigm, VAST-HPF, Bert 77, and PGI CDR-16. 
Not only is the list short, but also the purchase of one of these 
compilers will represent a large percentage of the cost of the 
entire system. This does not seem to fit well with the 
philosophy of a Beowulf cluster.  

Fortunately for users of distributed systems, a DSM library, 
such as Treadmarks [2] or SAM [3], will allow parallel code 
written for a shared-memory model to be run on a distributed-
memory system. The DSM packages have alleviated the 
message-passing and scheduling concerns for both the user 
and the compiler. There are also compilers that provide a 
global addressing model to the user, such as Olden [4] or 
Split-C [5]. However, the abstraction created by the DSM 
library is a source of inefficiency [6,7]. The paper by Cox, et. 
al. [6] showed several examples of regular programs where 
the compiler-generating message passing solution 
outperformed the DSM solution. Although DSMs create a 
convenient abstraction, they are not necessary the best option.  

The research for shared-memory systems is more advanced 
than that for distributed-memory. There are several reasons 
for this. First, parallel computation for distributed-memory 
systems appears to be more complex than for shared-memory. 
Second, DSMs have given users another option other than 
using a parallelizing compiler to generate message-passing 
code. Third, the lack of open-source parallelizing compilers 
has hindered research in automatic parallelization for 
distributed-memory. If someone wishes to conduct research in 
this area, there are few open source compilers from which 
they can start. As a result, much of the work done in this area, 
such as static scheduling heuristics, has used simulation or a 
small number of inputs. The Suif compiler [8] from Stanford 
University is an example of the benefit of having an open-
source compiler. Much research has been conducted using 
Suif as the base compiler, not only at Stanford but also around 
the world. This has been very beneficial for advancing 
compiler technology. Smaller research institutions, that do not 
have the resources of a school like Stanford, can now conduct 
research in compiler technology without making the enormous 
investment of building the infrastructure.  

This paper presents a progress report from a project called 
Paraguin at the University of North Carolina at Wilmington. 
We are building an open-source message-passing automatic 
parallelizing compiler based on the Suif compiler. The goal of 
this paper is three-fold: we would like to raise awareness of 
the Paraguin project and hopefully stimulate interest as well as 
collaboration, discuss where we are in the project and where 
we need to go, and present some preliminary results on work 
to overlap communication with computation.  

The rest of this paper is organized as follows: Section 2 
gives an overview of the project and discusses the background 
of message-passing code generation, Section 3 describes the 
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work we have done to overlap communication with 
computation, Section 4 presents some results, and Section 5 
provides some concluding remarks. 

1.1. Notation r T
niii ],,[ 1 K=  vector of loop indices 

p  virtual processor or partition 

wr pp ,  virtual processor for receiving and sending  

ii ublb ,  lower and upper bounds for loop i 

),,,( 1 niicf K  affine function of loop indices and 
symbolic constants 

2. BACKGROUND  

2.1. Overview of the Paraguin Project 
The Paraguin Project is a compiler pass written using Suif 

version 1.3. It will generate a program in C with calls to the 
MPI library [9] to send and receive data between processors. 
The work that we have done is largely based on work 
presented by Amarasinghe and Lam [1]. The reason we must 
reproduce much of that work is because their compiler pass is 
no longer available. However, we do present new work in this 
paper that was not given by Amarasinghe and Lam. The work 
they presented shows how to build a system of linear 
inequalities from a loop nest, given the computation 
decomposition (mapping of iterations to processors) and the 
exact data-flow analysis. This system is then used to generate 
a loop nest for each read array access to receive and unpack a 
message from the processor that generated that value. It is also 
used to generate a loop nest for each write array access to 
pack and send a message to the processors that need it. 
Amarasinghe and Lam assume that the computation 
decomposition and the exact data-flow analysis are given.  

We have also implemented in our compiler pass the 
construction of this system of linear inequalities and the 
generation of the Receive and Send loop nests. However, we 
have not yet implemented the data decomposition and the 
exact data-flow analysis. For the results presented in this 
paper, we have provided this information to the compiler by 
means of pragma statements in the source code. The dataflow 
analysis is a well-studied problem, and we plan to implement 
this so that the compiler can automatically perform as much of 
this analysis as possible. However, in the case of irregular 
loop nests, we will require the user to provide the dataflow 
analysis to assist the compiler in generating efficient code.  

We expect the data decomposition should be provided in a 
later version of Suif. Work done by Lim and Lam [10] shows 
how to take a loop nest as input and determine the 
computation decomposition that provides the maximum 
degree of parallelism while minimizing the degree of 
synchronization. They also show that this decomposition 
provides the coarsest granularity. Lim and Lam make the 
claim that their algorithm “[...] subsumes previously proposed 
loop transformation algorithms that are based on unimodular 
transformations, loop distribution, fusion, scaling, reindexing 
and statement reordering.” [10, p. 445]. The promise of this 
research is great, and we hope that, when this is available, we 

can then generate message-passing code that is much more 
efficient than was previously possible with a parallelizing 
compiler.  

2.2. Message-Passing Code Generation 
The algorithm to generate message-passing code is 

described in detail in [1]. We will only mention briefly how 
the algorithm works. Suppose we have a loop nest such as that 
shown in Figure 1, which contains read and write accesses to 
some array. The domain of our input programs is limited to 
loops whose bounds and array accesses are affine functions of 
the symbolic constants and the loop indices of outer loops, as 
is done in the research upon which our work is based. The 
i eration space of the loop nest is spanned by the vector t

T
niii ],,[ 1 K

r
= . The iterations will be mapped to virtual 

processors (or partitions), designated by p. This mapping is 
called the computation decomposition. The virtual processors 
will later be mapped to physical processors. Our compiler can 
support either cyclic or block mapping of virtual to physical 
processors. 

 
for i = l to  1 )(1 c )(1 cu
 for = to u  2i ),( 12 icl ),( 12 ic
  ... 
    for = to u  ni ),,,( 11 −nn iicl K ),,,( 11 −nn iic K
      ... 
      ... = ... X[ ] ... ),,,( 1 niicf K

      X[ ] = ... ),,,( 1 niicg K
      ... 

Figure 1: Example Loop Nest 

We use ri
r

 to denote the iteration instance of a statement that 

contains a read access for a particular array value and wi
r

 to 
denote the iteration instance of a statement that contains a 
write access for a particular array value. We also use pr nd pw 
to denote the virtual processor to which i

a

r

r
 and wi

r
 are 

mapped. A read access for iteration i  can be mapped to the 

exact iteration i
r

r

w

r
 where the write access generated the value 

used. This mapping is provided by a structure known as the 
Last Write Tree (LWT) [11].  

The original loop nest is transformed into a SIMD or MIMD 
code by creating a system of linear inequalities that represent 
the loop bounds for i

r
 and the computation decomposition. 

The new loop nest is generated using the algorithm from [12] 
based on Fourier-Motzkin elimination. We will refer to the 
transformed loop nest as the Execution loop nest (as opposed 
to the Send and Receive loop nests). The outermost loop of the 
Execution loop nest will have an index of p, such as the 
second loop nest shown in Figure 2. The p loop will later be 
turned into an if statement of the form: if (lb0<= p && p <= 
ub0). This will then be placed inside another loop, where p 
will iterate over all the virtual processors that are mapped to 
the physical processor number mypid. 
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/* Receive Loop Nest */ 
for = to  rp

0r
lb

0r
ub

 for i = lb to ub  
1r 1r 1r

  ... 
   for i = to ub  

nr nrlb
nr

    for = lb to ub { wp
0w 0w

     receive packet from processor  wp
     for = lb to  

1wi 1w 1wub
      ... 
       for i = lb to ub  

nw nw nw

        unpack (X[ ]) ),,,(
1 nww iicf K

    } 
 
/* Execution Loop Nest */ 
for = lb to ub  p 0 0

 for i = lb to ub  1 1 1
  ... 
   for i = to ub  n nlb n
    ... 
    ... = ... X[ ] ... ),,,( 1 niicf K

    X[ ] = ... ),,,( 1 niicg K
    ... 
 
/* Send Loop Nest */ 
for = lb to ub  wp

0w 0w

 for i = to ub  
1w 1wlb

1w

  ... 
   for i = lb to ub  

nw nw nw

    for = lb to ub { rp
0r 0r

     for = lb to ub  
1r

i
1r 1r

      ... 
       for i = lb to ub  

nr nr nr

        pack (X[ ]) ),,,(
1 nrr iicg K

     send packet to processor  rp
    } 

Figure 2: Before Overlapping Communication with 
Computation 

For each read access to array location X[f(c,i1,…,in)], we can 
generate a loop nest that will receive and unpack the data from 
the processor that created the value, such as the first loop nest 
shown in Figure 2. This is done by building a system of linear 
inequalities from the loop bounds, the LWT mapping, the 
computation decomposition for i

r
 and ir w

r
, and the constraint 

pr ≠ pw. The loop nest is then generated from this sys em, such 
that the order of the loop indices is (

t
),,, wwrr ipip

rr
, from 

outermost to innermost. The body of the loop nest is the 
statement to unpack the data. The statement to receive the 
packet is placed immediately following the determination of 
pw. We will refer to this loop nest as the Receive loop nest.  

The Send loop nest for each write access to array location 
X[g(c,i1,…,in)] is generated is a similar fashion, except that the 
loop indices are ordered (

rr
, from outermost to 

innermost. The body of the loop nest is the statement to pack 
the data. The statement to send the packet is placed at the end 
of the pr loop body. We will refer to this loop nest as the Send 
loop nest. Many of the innermost loops will be degenerate 
loops (containing only one iteration). By definition, the pw and 

),,, rrww ipip

wi
r

 loops of the Receive loop nest will be degenerate. The 
degenerate loops are later replaced by simple assignment 
statements. 

3. OVERLAPPING COMMUNICATION WITH 
COMPUTATION 

When the Receive loop is generated from an Execution loop, 
it will be a loop nest representing for the vector 

. We replace the pr and T
wwwrrr nn

iipiip ],,,,,,,[
11
KK ri

r
 loop 

indices with p and i
r

. Similarly, the send loop represents the 
vector .  We replace the pw and T

rn
i ],rrwww n

ipiip ,,,,,,[
11
KK

wi
r

 loop indices with p and i
r

.  This causes the Receive, Send, 
and Execution loops to have the same indices for the 
outermost loops. This will allow us to combine the loops such 
that the loop bodies that are executed with the same values for 
p and i

r
, will be inside a single loop.  

Figure 3 shows an example of loop nests that can be merged 
so that the communication overlaps with the computation. 
Notice that the outermost loops have the same loop index. The 
intersection of these iterations is [2 … N -1]. We take the 
three loop bodies and put them inside a new loop that iterates 
across this intersection, as shown in Figure 4. Then we need to 
insert new loops for the iterations that are left over.  

 
for ik = 2 to N 
 Receive Loop Body 
for ik = 1 to N 
 Execution Loop Body 
for ik = 1 to N-1 

Send Loop Body 
Figure 3: Example of Loops That Can be Merged 

 
for ik = 1 to 1 
 Execution Loop Body 
 Send Loop Body 
for ik = 2 to N - 1 
 Receive Loop Body 
 Execution Loop Body 
 Send Loop Body 
for ik = N to N 
 Receive Loop Body 

Execution Loop Body 
Figure 4: After Merging Loops 

The advantage of this is that we can overlap communication 
with computation. The reason it is legal to do this is because 
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the iteration instance i  of the Receive loop nest that 
generates he array value X[f(c,i1,…,in)], used during it ration 
instance 

r

r

t e
i
r

 of the Execution loop nest is such that iir
rr

= . 
Likewise for the Send loop nest.  We can then merge the loops 
within these loops recursively to further improve performance. 

Amarasinghe and Lam mentioned merging these loop nests. 
However, they did not provide any details of how it was 
implemented and whether it proves to be a useful technique. 
We provide an algorithm in this section that attempts to merge 
the Receive, Execution, and Send loop nests when it is 
possible to do so. We also provide some preliminary results 
that indicate that it can provide an improvement in 
performance.  

The algorithm shown in Figure 5 is our algorithm to merge 
the loops.  It should be applied to the loop nests after 
renaming the outermost loops indices to p and i

r
, but before 

translating the p loop to an if statement. This is a greedy 
algorithm, in the sense that it tries to find the first set of loops 
for which there is an intersection of iterations. M is used for 
the system of inequalities that represents the loop bounds of 
the current intersection. combLoops and Body are used to 
store the loops and their respective bodies that are in the 
current intersection. The algorithm steps currentLoop 
through the list of for loops (line 8). If the iterations of the 
currentLoop also intersect with the iterations in M, then it 
is added to the intersection (lines 10-14). Once we find a loop 
that does not intersect or has a different index, then we will 
either start over with the current loop, if the intersection is 
only a single loop (lines 16-21), or we will merge the loops in 
combLoops.  

Once we have a set of loops whose iterations intersect, we 
will then proceed to merge these (lines 23-43). We create a 
new loop L, whose bounds satisfy the constraints of M and 
whose body is Body, and insert this into the code (lines 24-
27). We then remove the loops that are being merged (line 
29). Next we need to insert loops for the iterations that are left 
over. This is done by taking each of these loops and checking 
to see if its set of iterations intersects with the inverse of the 
bounds of L (i.e. index < lb or index > ub). If it does 
intersect with either of these, then there are iterations that are 
not included in L.  Therefore we must add a new copy of this 
loop with the remaining iterations (lines 30-37). After we have 
merged a set of loops, we start currentLoop from the 
beginning (lines 39-43).  

We stop this process when we cannot find any consecutive 
loops in the list of loops that have any common iterations (line 
47). Then we recursively attempt to merge the inner loops 
(lines 48-49), as long as the bodies are lists of for loops only 
whose indices are the same variable.  

4. RESULTS 

We ran our compiler pass on the LU decomposition kernel 
shown in Figure 6. This is the same program segment that 
Amarasinghe and Lam used to demonstrate their compiler 
pass. The mapping of virtual processors to physical processors 
was done using a block mapping. After the Send and Receive 

loop nests are generated, the entire set of loops is placed 
inside a loop that maps the virtual processors to physical.  

The two resulting programs (before and after merging the 
loops) were then compiled with a native compiler, linked with 
the MPI library, and run on the Beowulf cluster at UNCW. 
This Beowulf cluster consists of twelve dual-processor 1 GHz 
Pentium III processors, connected together by a 10/100 Fast 
Ethernet switch. The head machine has 512 Mbytes of 
memory and 75 Gbytes of disk space, and the client machines 
each have 256 Mbytes of memory and 30 Gbytes of disk 
space. We also ran these programs on an IBM RS/6000 SP at 
the North Carolina Supercomputing Center, which has 180 
Winterhawk II nodes, each of which has four 375 MHz Power 
3 processors, 2 Gbytes memory, 8 Mbytes L2 cache, and 64 
Kbytes L1 cache. 

Figure 7 shows the running times of these programs on the 
Beowulf cluster with a matrix size of 256x256. Overlapping 
the communication with computation by combining the loops 
in the manner that we described previously produced a 
significant improvement in performance. The improvement 
ranges between approximately 5 and 65 percent. The results 
for the IBM SP are shown in Figure 8.  We were not able to 
run with a larger input size than 150x150, because the 
message buffers for MPI on that system are set so that we 
could not send very large packets.  The results for the IBM 
range from 4 to 22 percent. 

Although showing the results from one sample program 
does not prove that our algorithm always improves the 
performance, we present this data to suggest that this 
technique can make a difference. We do not yet know if this 
technique or the compiler can produce similar results on other 
types of problems. Our experience tells us that we will find 
that the compiler will work well for some problems (or 
problem domains) and poorly for others. We emphasize that 
this work is only preliminary. More experimentation is 
needed. However, the results presented here provide the 
motivation to continue this research.  

5. CONCLUSIONS 

Distributed-memory computer systems are increasing in 
popularity. However users of these systems must either write 
programs with explicit message-passing calls or use a 
Distributed Shared Memory (DSM) library. Although DSMs 
provide a convenient abstraction, Cox, et. al. [6] have shown 
that a compiler generated message-passing program can 
outperform the shared-memory version of the same program 
running with a DSM. This means that DSMs should not be the 
only option for the user.  

Unfortunately, compiler technology for distributed-memory 
computer systems has lagged behind the technology for 
shared-memory computer systems. The reason is three fold: 
distributed-memory parallelism is more complex, there is a 
lack of open source parallelizing compilers that can generated 
message-passing code, and DSMs have given users another 
choice. In this paper, we introduced the Paraguin project at 
the University of North Carolina at Wilmington. The goal of 
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 Input:  InLoops :  List of for loops  
 Output: List of merged for loops  
 Let: M, c1, c2 : set of inequalities  
  combLoops : list of for loops  
  Body : list of instructions 
  currentLoop, loop, L : for loop 
  index : loop index variable 
  lb, ub : expression 
 
1 Repeat 
2 M ← Ø 
3 combLoops ← null 
4 Body ←  null 
5 currentLoop ← InLoops.first() 
6 index ← currentLoop.index () 
7  
8 While ( NOT currentLoop.isPastEnd() ) do 
9  
10 If index = currentLoop.index() AND (M = Ø  OR   currentLoop.bounds() ∩ M ≠ Ø ) then 
11 M ← M ∪ currentLoop.bounds() /* Add this loop to the intersection */ 
12 combLoops.append( currentLoop ) 
13 Body.append( currentLoop.body() ) 
14 currentLoop ← currentLoop.next() 
15  
16 Else if | M | ≤ 2 then  /* M contains bounds for only 1 for loop, so start over */  
17 M ← currentLoop.bounds() 
18 combLoops  ← currentLoop 
19 Body ← currentLoop.body() 
20 index ← currentLoop.index() 
21 currentLoop ← currentLoop.next() 
22  
23 Else  /* Merge the current set of loops */ 
24 lb ← makeLowerBound( M ) 
25 ub ← makeUpperBound( M ) 
26 L ← new ForLoop( index, lb, ub, Body ) 
27 InLoops.insertBefore( L, currentLoop )  
28  
29 For each loop ∈ combLoops do InLoops.remove( loop )Endfor  
30 For each loop ∈  combLoops do 
31 c1 ← loop.bounds() ∩ (index  < lb) 
32 c2 ← loop.bounds() ∩ (index  > ub) 
33 If  | c1| ≠  0 InLoops.insertBefore( new ForLoop( index,  
34 makeLowerBound( c1 ),  makeUpperBound( c1 ), loop.body() ), L )  
35 If  | c2| ≠  0 InLoops.insertAfter( new ForLoop( index,  
36 makeLowerBound( c2 ), makeUpperBound( c2 ), loop.body() ), L )   
37 Endfor 
38  
39 M ← Ø  
40 combLoops ← null 
41 Body ← null 
42 currentLoop ← InLoops.first() 
43 index ← currentLoop.index () 
44  
45 Endif 
46 Endwhile 
47 Until M = Ø 
48 For each loop ∈ InLoops do  
49 Recursively apply this algorithm to loop.body()  
50 Endfor 
51 Return InLoops 

Figure 5: Algorithm to Merge Loop Nests
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for (i1 = 0; i1 <= N; i1++) 
  for (i2 = i1 + 1; i2 <= N; i2++) 
    X[i2][i1] /= X[i1][i1]; 
    for (i3 = i1 + 1; i3 <= N; i3++) 
      X[i2][i3] -= X[i2][i1] * X[i1][i3]; 
  } 

Figure 6: Sequential Version of LU Decomposition 
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Figure 7: Results from the Beowulf Cluster. Input size is 

256x256. 
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Figure 8: Results from the IBM SP. Input size is 

150x150. 

the Paraguin project is to build an open source message-
passing parallelizing compiler for distributed-memory 
computer systems. We have discussed the progress we have 
made in developing this compiler and mention the parts that 
have not yet been developed. It is our intent that, by providing 
an open source compiler, we will stimulate research in 
automatic message-passing parallelism and encourage 
collaboration.  

We demonstrated a technique to improve the performance 
of the resulting program by overlapping communication with 
computation. Although this concept was introduced in 
previous work [1], the algorithm was not developed nor 
shown to provide benefit. Our results indicate that the 
technique does significantly improve the performance. 
However, these results are only preliminary. Further 

experimentation is needed. These results indicate that our 
technique has merit, and that we should continue our 
investigations. 
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