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Abstract - In this paper we experiment with two 
optimization techniques we are considering 
implementing in a parallelizing compiler that generates 
parallel code for a distributed-memory system.  We 
have found that there are two problems that often arise 
from the automatically generated message-passing 
code: 1) messages contain redundant data, and 2) the 
same data is sometimes transmitted to different 
processors, yet the messages are repacked for each 
processor. 

Our experiments demonstrate that it is indeed 
worthwhile suppressing the packing of redundant 
information in a message.  Not only did it improve 
performance, but it allowed us to run the program on a 
larger input size.  We also discovered that it is not 
worthwhile to suppress the repacking of the same 
message.  The reason is because the size of the 
messages is a greater factor in the performance of a 
message-passing program than the number of 
instructions executed.  

Keywords: Parallelizing compiler, message-passing, 
code generation.

1 Introduction
The concept of automatically parallelizing 

sequentially written programs to run on parallel 
machines has existed for several decades.  The 
advancement in this area has been significant but not 
outstanding.  This is mainly because there are several 
NP-hard problems that must be addressed when 
deciding how best to parallelize a sequential program.  
As a result, many researchers would rather hand-code 
their parallel solution than to rely on a parallelizing 
compiler.  Nonetheless, we continue to perform research 
on parallelizing compilers in hope to ease the burden on 
the programmer of finding a parallel solution.  

The progress made by researchers in creating 
parallelizing compilers for shared-memory parallel 

systems has been greater than the progress made by 
researchers of compilers for distributed-memory parallel 
systems.  The reason is because the parallel code must 
make use of message-passing in order to deal with the 
distributed nature of the data.  This adds another level 
of complexity to the already complex task of 
parallelizing sequential programs.  Furthermore, most 
parallel programs written to run in a distributed-memory 
system use a language or tools that make them 
asynchronous.  An asynchronous environment usually is 
a more difficult environment in which to write a correct 
parallel program than a synchronous environment.  

However, distributed-memory systems are 
increasing in popularity and frequency.  Shared-memory 
systems are traditionally large and expensive systems.  
On the other hand, one can put together a distributed-
memory system of relatively inexpensive computers and 
a network switch. Furthermore, desktop computers that 
are manufactured today have multiple processors.  For 
these reasons smaller schools and organizations are 
opting to use these systems because of their 
affordability and the ease with which multi-processor, 
distributed-memory systems can be put together.  Also, 
the advancement of grid technology is making it 
possible to have a very large number of processors at 
one's disposal.  The need is growing for tools that can 
assist computer programmers in developing parallel 
applications that can run on distributed-memory 
systems.

In this paper, we are considering a technique to 
reduce the size of the messages that are transmitted 
between processors.  In developing our compiler and 
testing with some sample programs, we discovered that 
the techniques for passing messages can lead to 
redundant information being packed in a single
message.  Furthermore, the same message can be sent to 
multiple processors, yet the message will be 
reconstructed each time.  We are developing techniques 
to check for and suppress the packing of redundant 
information in messages as well as suppress the 



recreation of the same message.  If we are successful, 
then we will not only reduce the size of the messages, 
we will also reduce the time to create the messages.  
Since these techniques will involve removing loops 
within a loop nest, the time savings could be significant.  

The purpose of the research presented in this paper 
is to prototype these ideas to determine if they are 
feasible.  We present here an example program where 
the messages have redundant information.  We generate 
the loop nests the way the compiler does and then 
modify the loops to suppress the redundant information 
and suppress the repacking of messages.  We then 
compare the sizes of the messages as well as the time to 
execute the programs.  If we are successful in 
decreasing the time for the program to execute, then we 
will implement these techniques in the compiler. 

We only consider one application in this paper: the 
elimination step of Gaussian Elimination.  Again, this 
paper is presenting the preliminary results of the 
techniques mentioned above.  These preliminary results 
will justify continuing the effort to implement these 
techniques or to abandon them.  Although we have seen 
the problem of redundant data in other applications, we 
do not know if this is a common problem in real 
scientific code.  We expect this problem to be common, 
since the problem of redundant data is caused by 
multiple partitions being mapped to the same physical 
processor and not a characteristic of the application 
itself.  We will elaborate further on the causes later in 
this paper.

2 Background
We have developed an automatically parallelizing 

compiler that produces message passing code using 
MPI suitable for execution on a distributed-memory 
system.  The compiler is called the Paraguin Compiler
[5] and is built using the SUIF Compiler [7].  The SUIF 
Compiler provides all the tools necessary to build a 
parallelizing compiler.

The technology behind the generation of parallel 
code and the code to transmit messages containing the 
dependent data is beyond the scope of this paper.  We 
refer the interested reader to [1], [2], [4], [5], [7], and 
[8] for background on the details of how this is done.  In 
this paper we present the code that the compiler 
produces without discussing the details of how it was 
produced or arguing the correctness of that code.

Figure 1 shows the elimination step of Gaussian 
Elimination, which we will use as our running example 

and prototype for the techniques presented in this paper.  
Given that the problem is partitioned such that each 
iteration of the i2 loop is a separate partition, there is a 
data dependence between the left-hand side of the 
assignment of statement S1 (a[i2][i3]) and the 
second array reference (a[i1][i3]) on the right-hand 
side that crosses partitions.  When these partitions are 
mapped to different physical processors, 
communication of this value is required.  

Figures 2 and 3 show the receive and send loops 
that unpack and pack the dependent data between the 
reference a[i2][i3] on the left-hand side of the 
assignment and the reference a[i1][i3] on the right-
hand side of the assignment.  The send loop is executed 
by any processor where pidw is the current processor's 
id (mypid).  Similarly, the receive loop is executed by 
any processor where pidr is the current processor's id 
(mypid).  The parallelized execution loop is inserted 
between the two communication loops.  The code 
shown here does indeed work correctly, although the 
performance is poor.  The poor performance is due to 
the fact that communication and computation are 
performed is completely separate steps.  This problem is 
addressed by overlapping communication with 
computation using a techniques described in [5].  
However, this technique is out of the scope of this paper 
and a step that is performed after the creation of the 
communication loops.  The techniques we are proposing 
in this paper would be performed after the creation of 
the communication loops but prior to the overlapping 
step.  

Within the loop nests that send and receive 
messages are various loop variables.  These loop 
variables have meaning.  Take the send loop for 
example.  Each processor executes that loop nest where 
the send processor id (pidw) is itself.  It then loops 
through all physical processors (pidr) that require data 
computed by pidw.  Next, the send processor loops 
through all partitions it owns (pw) and the partitions that 
the receiving processors owns (pr) for which there is 

Figure 1. The Elimination Step of Gaussian 
Elimination.

for (i1 = 1; i1 <= N; i1++) {

   for (i2 = i1+1; i2 <= N; i2++) {

      for (i3 = N+1; i3 >= i1; i3--) {

         a[i2][i3] = a[i2][i3] – a[i1][i3]

             * a[i2][i1] / a[i1][i1];   (S1)

        }

    }

}



data produced by pw needed by pr.  Then the sending 
processor loops through all iterations (i1w, i2w, i3w)
executed by pw and all iterations (i1r, i2r, i3r) 
executed by pr for which iteration i1w, i2w, i3w
produces data needed during iteration i1r, i2r, i3r.  
The receive loop can be viewed in a similar way except 
that it is executed by each processor where pidr is 
itself.

3 Statement of the Problem
The code generated by the compiler produces 

messages containing redundant data. This needlessly 
increases the size of messages sent between pairs of 
processors as well as the time to pack those messages. 
Furthermore, if multiple processors are receiving a 
message from the same sending processor, the sending 

Figure 2. The Receive Loop for the Elimination Step of Gaussian Elimination.

//RECEIVE loop
pidr = mypid;
if(pidr >= 1 && pidr <= (-2+N)/blksz){
   for(pidw = 0; pidw <= -1+pidr; pidw++){
      printf ("<pid%d>: receive from <pid%d>\n", pidr, pidw);
      MPI_Recv(..., pidw, ...);
      for(pr = 2+blksz*pidr; pr <= min(1+blksz+blksz*pidr, N); pr++){
         for(i1r = max(2+blksz*pidw, 2); i1r <= 1+blksz+blksz*pidw; i1r++) {
            i2r = pr;
            for(i3r = i1r; i3r <= 1+N; i3r++) {
                pw = i1r;
                i1w = -1+pw;
                i2w = 1+i1w;
                i3w = i3r;
                MPI_Unpack(..., &a[i1r][i3r], ...);
                printf("<pid%d, p%d>: unpack a[%d][%d] - Value: %f\n",
                                          pidr, pr, i1r, i3r, a[i1r][i3r]);
            }
        }

      }
   }
}

Figure 3. The Send Loop for the Elimination Step of Gaussian Elimination.

//SEND loop
pidw = mypid;
if( pidw >= 0 && pidw <= (-2-blksz+N)/blksz){
   for(pidr = 1+pidw; pidr <= (-2+N)/blksz; pidr++){
      for(pr = 2+blksz*pidr; pr <= min(1+blksz+blksz*pidr, N); pr++){
         for(i1r = max(2+blksz*pidw, 2); i1r <= 1+blksz+blksz*pidw; i1r++) {
            i2r = pr;
            for(i3r = i1r; i3r <= 1+N; i3r++) {
                pw = i1r;
                i1w = -1+pw;
                i2w = 1+i1w;
                i3w = i3r;
                MPI_Pack(&a[i2w][i3w], ...);
                printf ("<pid%d, p%d>: pack a[%d][%d] - Value: %f\n",
                                          pid w, pw, i2w, i3w, a[i2w][i3w]);
            }
         }
      }
      MPI_Send(... pidr ... );
      printf ("<pid%d>: send to <pid%d>\n", pidw, pidr);
   }
}



processor may repack the same information in each 
message for each receiving processor, instead of 
packing the message once and then sending multiple 
times. This further increases the time spent packing 
messages.

Take for example the code to send and receive 
data from the elimination step of Gaussian Elimination 
shown in figures 2 and 3.  A sample of the debugging 
statements from this sending loop of figure 3 is shown 
in figure 4.  One can see from figure 4 that the same 
array location is packed multiple times in a single 
message.  This happens when the number of partitions is 
larger than the number of processors, which is usually 
the case.  Each instance of an array location in the 
message is destined for a separate partition.  However, 
since each processor may be responsible for executing 
multiple partitions, multiple instances of the same array 
element will appear in the message.  One can also see 
this in the code from the send loop in figure 3.  The data 
that are packed are the values a[i2w][i3w].  Yet 
there is no dependence of the array element subscripts 
i2w and i3w and the loop variable pr (which 
corresponds to all the partitions that require the data 
being packed).  Each iteration of the pr loop packs the 
same information.  Similarly, the receive loop nest 
unpacks the same information for each iteration for the 
pr loop.  Furthermore, the array element subscripts are 
not dependent on the receiving processor id (pidr).  
So each iteration of the pidr loop repacks the same 
message with the same data.

4 Ideas to Speedup Generated Code

We believe we can generate smaller messages, and 
reduce packing time by using the following techniques: 

1. The size of the messages can be reduced by 
replacing FOR loops in the message passing code 
with assignment statements (causing them to be 
degenerate loops) when the loop variable is 
independent of array element subscript variables. 

2. The time spent packing can be reduced by 
placing an IF statement with the condition that the 
pidr is equal to the lower bound within the send 
loop code if the receiving processor pidr is 
independent of the array element subscript 
variables. 

Both of these techniques require a check of 
independence between the array element subscripts and 

the loop variable.  The SUIF compiler has the tools 
necessary to check for dependence.  We expect this to 
be fairly easy to implement.  This could be 
accomplished by looping through each loop variable in 
the communication loops (except for pidr) and 
performing a dependence test on that loop variable and 
the data being packed.  If the loop variable of both sides 
of the communication is independent of the data being 
packed, then the loop can be suppressed using technique 
(1) above.  The same test can be performed on the 
pidr loop variable to determine if technique (2) 
applies.  The tests we present in this paper are intended 
to investigate the effects of these techniques on the 
performance and whether the implication justifies 
continued work on these ideas.

5 Tests
To test the feasibility of our ideas, we created 5 

programs that perform the elimination step of Gaussian 
Elimination:

 Program #1 - The Sequential Program

 Program #2 - The original MPI Program 
automatically generated

 Program #3 - The MPI Program with redundant 
data suppression

 Program #4 - The MPI Program with redundant 
repacking suppression

 Program #5 - The MPI Program with redundant 
data & repacking suppression

The message passing and main execution loops 
used in the prototypes were generated using Linear 
Inequality Calculator (LIC) included with the SUIF 
compiler [7]. LIC aids in rapidly prototyping systems 
for code generation. The loop bounds, partitioning, 

Figure 4. Sample from Debug Statements from 
Send Loop of Figure 2.

...
<pid0, p2>: pack a[2][2] - Value: 63.000000
<pid0, p2>: pack a[2][3] - Value: 28.000000
<pid0, p2>: pack a[2][4] - Value: 91.000000
<pid0, p2>: pack a[2][5] - Value: 60.000000
<pid0, p2>: pack a[2][6] - Value: 64.000000
...
<pid0, p2>: pack a[2][2] - Value: 63.000000
<pid0, p2>: pack a[2][3] - Value: 28.000000
<pid0, p2>: pack a[2][4] - Value: 91.000000
<pid0, p2>: pack a[2][5] - Value: 60.000000
<pid0, p2>: pack a[2][6] - Value: 64.000000
...
<pid0>: send to <pid1>



partition-to-processor mapping, and last-write tree for 
the Gaussian Elimination code of figure 1 were 
provided to LIC, which then generated the loops.  The 
original communication loops for program #2 are shown 
in figures 2 and 3.  

Program #1 is the sequential version of the 
program shown in figure 1.  This is used as a control.  
Programs 3, 4, and 5 are modifications of Program #2.  
In Program #3, we suppress the packing of redundant 
data in each message by replacing the pr FOR loops 
with an assignment of pr to its lower bound value in 
both the send and receive loop nests.  Specifically, the 
following statement was inserted to replace the pr FOR 
loop in the loops shown in figures 2 and 3:

pr = 2+blksz*pidr;

This is a legal modification to the loops because 
the body of those loops (the packing of a[i2w][i3w]
and the unpacking of a[i1r][i3r]) is independent 
of the variable pr.  So only one iteration of the loop is 
necessary.  

In Program #4, we attempted to suppress the 
repacking of the same message for each processor to 
which the message is sent.  We accomplish this by 
inserting the following IF statement inside the pidr
loop and surrounding the packing code in the send loop 
nest of figure 3:

if(pidr == 1+pidw){

This has the effect of executing the packing of the 
message only for the first iteration of the pidr loop.  
Subsequent iterations of the loop do not repack the 
message, but simply send the existing message.  This 
should be done on the send side only, because the 
receive loop still needs to unpack the data in the 
message.

In Program #5, both redundant data and redundant 
repacking were suppressed using the techniques of 
Program #3 and Program #4 together.

6 Results
To test the programs, each parallel program was 

run on a cluster consisting of 6 Dell PowerEdge 1850s 
with 2 Intel Dual Core 2.8 GHz processors with 12 
Gbytes of memory and 9 Sunfire X4100s with 2 AMD 
Dual Core 2.6 Ghz processors with 8 Gbytes of 
memory.  The machines are connected using a Cisco 
100 Mbps switch.  The sequential program was run on 

one Dell PowerEdge, while the parallel programs were 
run on 4, 8, 12, 16, and 20 processors.  The problem 
input size ranged from 100 to 1000 in increments of 10. 
Each program was run 10 times at each processor/input 
size combination, and the runtime results presented in 
this section are the averages of the 10 runs. The total 
sums of message sizes for each program were also 
collected.

The performance of Program #2, the original 
parallel program, is shown in figure 5. The runtime of 
this program was significantly worse than the sequential 
program due to the time spent packing and sending the 
large messages.  Furthermore, we were unsuccessful in 
running the program for some combinations of the 
number of processors and the problem size because the 
resulting messages were so large that they exceeded the 
memory capacity of the machines.

The performance of Program #3 is shown in figure 
6. The technique of suppressing the packing of 
redundant data allowed the parallel program to run at a 
similar speed as the sequential program. The 
performance of the parallel program running on 4 
processors was actually better than sequential, but this is 
due to the fact that those 4 processors reside on the 
same machine and use shared memory to implement the 
message passing.  Although it is not easy to detect using 
the same scale for figure 6 as the other graphs, the small 
gap between the sequential runtime and the runtime of 
the parallel program is narrowing.  If the problem size 
had been large enough the parallel program should have 
run faster than sequential.  

Furthermore, we have not implemented 
overlapping communication with computation as 
discussed in [5].  The code, as described here, will 
essentially be executed sequentially because each 
processor will receive all of its required data before 
proceeding with execution.  Likewise, each processor 
will not transmit its computed values to processors that 
need them until it has finished all of its execution.  
Therefore, we cannot expect to do much better than 
sequential execution, until we can implement the 
technique of suppressing redundant data in the 
compiler, which does overlap communication with 
computation.

The performance of Program #4, which suppresses the 
repacking of messages, is shown in figure 7. This 
program performed only slightly better than the original 
parallel program.  The slight performance improvement 
is the result of the time savings for not having to repack 
the message. However, one can see that performance is 
influenced primarily by the time required to transmit the 
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messages, not by the time spent executing instructions 
that copy values from one memory location to another, 
which packing does.  Furthermore, the suppression is 
only relevant on one side of the communication (the 
send side).

Program #5 combined the data and repack 
suppression techniques. The timing results are not 
shown because they are almost identical to the results of 
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Program #3. It appears that combining the two 
techniques does not provide a significant advantage 
over implementing data suppression alone.

Figures 8 and 9 show the total sizes of all 
messages sent between processors for the input size and 
number of processor combinations.  Program #3 greatly 
reduces the size of the messages, which is the main 
reason for the performance improvement.  It also allows 
the problem size to increase, since the sizes of the 
messages are not pushing the memory limits of the 
machines.  

Program #4 actually increased the total bytes 
transmitted.  This is because the last processor may 
have a smaller set of partitions to execute.  So the 
messages sent to the last processor are likely be smaller.  
When we suppress repacking of the messages, the 
messages sent to the last processor may have too much 
data.  This does not present a problem, but since the 
performance was only marginally improved, it is not 
worth it.  In a distributed-memory environment, 
anything we can do to reduce the message size is more 

Figure 9. Total Bytes Transmitted After Suppressing 
Redundant Data

Figure 8. Total Bytes Transmitted for Original Loops

Figure 7. Runtime when Repacking of Message is 
Suppressed.

Figure 6. Runtime when Packing of Redundant 
Data is Suppressed.

Figure 5. Runtime for Original Loops



important than anything we can do to reduce the number 
of instructions executed.

Program #5 did not increase the total bytes 
transmitted from Program #3, but it did not decrease it 
either.  Again, it is not worth the effort to suppress 
repacking when the dominant factor for performance in 
a distributed-memory environment is the number of 
bytes transmitted.  

7 Conclusions
In this paper we tried two techniques to improve 

the performance of parallel code generated by an 
automatic parallelizing compiler to run on a distributed-
memory system using message passing.  The purpose of 
this experiment is to determine if there is reason to 
pursue these techniques and make the effort to 
implement them in a real parallelizing compiler.  The 
two techniques that we presented in this paper are: 1) 
suppress the redundant data within messages sent 
between processors, and 2) suppress the repacking of 
the same message for different processors.

What we discovered during this experiment is that 
it is more important to reduce the message sizes than to 
reduce the amount of code executed.  In a distributed-
memory environment where messages are transmitted to 
pass dependent data between processors, the size of the 
message is a dominant factor on the runtime of the 
program.  Reducing the redundant information in 
messages has a large impact on the performance.  
Furthermore, reducing the message sizes allows one to 
run the program on larger input sizes, which is another 
very important consequence of this technique.  

The second technique of suppressing the repacking 
of the same message that is sent to multiple processors 
had only a marginal improvement in performance.  The 
increased performance was due to the fact that fewer 
instructions are executed.  However, reducing the 
number of instructions executed has only a small impact 
on performance as compared to the impact of reducing 
message sizes.  In fact, suppressing the repacking of 
messages can lead to larger messages being sent to 
some processors.  It is very important to make every 
effort to keep the number of bytes transmitted as small 
as possible, even at the expense of executing more 
instructions.

We anticipate the implementation of the technique 
to suppress the packing of redundant data in messages 
to be fairly straightforward.  Fortunately, the SUIF 

compiler has techniques available to test for the 
dependence between two variables.  This test is 
essential for determining if a loop can be replaced by a 
degenerate loop.

The results of this experiment will allow us to 
move forward with the implementation of the first 
technique.  We expect to demonstrate that this is a 
worthwhile optimization for a parallelizing compiler to 
apply.  Also as a result of this experiment, we will not 
spend time implementing the second technique, since it 
is unlikely to result in any significant improvement.
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