
Suppressing Independent Loops in Packing/Unpacking
Loop Nest to Reduce Message Size for Message-Passing

Code

P. Jerry Martin
Department Computer Science

University of North Carolina Wilmington
Wilmington, NC USA

Clayton S. Ferner
Department Computer Science

Company of North Carolina Wilmington
Wilmington, NC USA

Abstract - In this paper we experiment with two
optimization techniques we are considering
implementing in a parallelizing compiler that generates
parallel code for a distributed-memory system. We
have found that there are two problems that often arise
from the automatically generated message-passing
code: 1) messages contain redundant data, and 2) the
same data is sometimes transmitted to different
processors, yet the messages are repacked for each
processor.

Our experiments demonstrate that it is indeed
worthwhile suppressing the packing of redundant
information in a message. Not only did it improve
performance, but it allowed us to run the program on a
larger input size. We also discovered that it is not
worthwhile to suppress the repacking of the same
message. The reason is because the size of the
messages is a greater factor in the performance of a
message-passing program than the number of
instructions executed.

Keywords: Parallelizing compiler, message-passing,
code generation.

1 Introduction
The concept of automatically parallelizing

sequentially written programs to run on parallel
machines has existed for several decades. The
advancement in this area has been significant but not
outstanding. This is mainly because there are several
NP-hard problems that must be addressed when
deciding how best to parallelize a sequential program.
As a result, many researchers would rather hand-code
their parallel solution than to rely on a parallelizing
compiler. Nonetheless, we continue to perform research
on parallelizing compilers in hope to ease the burden on
the programmer of finding a parallel solution.

The progress made by researchers in creating
parallelizing compilers for shared-memory parallel

systems has been greater than the progress made by
researchers of compilers for distributed-memory parallel
systems. The reason is because the parallel code must
make use of message-passing in order to deal with the
distributed nature of the data. This adds another level
of complexity to the already complex task of
parallelizing sequential programs. Furthermore, most
parallel programs written to run in a distributed-memory
system use a language or tools that make them
asynchronous. An asynchronous environment usually is
a more difficult environment in which to write a correct
parallel program than a synchronous environment.

However, distributed-memory systems are
increasing in popularity and frequency. Shared-memory
systems are traditionally large and expensive systems.
On the other hand, one can put together a distributed-
memory system of relatively inexpensive computers and
a network switch. Furthermore, desktop computers that
are manufactured today have multiple processors. For
these reasons smaller schools and organizations are
opting to use these systems because of their
affordability and the ease with which multi-processor,
distributed-memory systems can be put together. Also,
the advancement of grid technology is making it
possible to have a very large number of processors at
one's disposal. The need is growing for tools that can
assist computer programmers in developing parallel
applications that can run on distributed-memory
systems.

In this paper, we are considering a technique to
reduce the size of the messages that are transmitted
between processors. In developing our compiler and
testing with some sample programs, we discovered that
the techniques for passing messages can lead to
redundant information being packed in a single
message. Furthermore, the same message can be sent to
multiple processors, yet the message will be
reconstructed each time. We are developing techniques
to check for and suppress the packing of redundant
information in messages as well as suppress the

recreation of the same message. If we are successful,
then we will not only reduce the size of the messages,
we will also reduce the time to create the messages.
Since these techniques will involve removing loops
within a loop nest, the time savings could be significant.

The purpose of the research presented in this paper
is to prototype these ideas to determine if they are
feasible. We present here an example program where
the messages have redundant information. We generate
the loop nests the way the compiler does and then
modify the loops to suppress the redundant information
and suppress the repacking of messages. We then
compare the sizes of the messages as well as the time to
execute the programs. If we are successful in
decreasing the time for the program to execute, then we
will implement these techniques in the compiler.

We only consider one application in this paper: the
elimination step of Gaussian Elimination. Again, this
paper is presenting the preliminary results of the
techniques mentioned above. These preliminary results
will justify continuing the effort to implement these
techniques or to abandon them. Although we have seen
the problem of redundant data in other applications, we
do not know if this is a common problem in real
scientific code. We expect this problem to be common,
since the problem of redundant data is caused by
multiple partitions being mapped to the same physical
processor and not a characteristic of the application
itself. We will elaborate further on the causes later in
this paper.

2 Background
We have developed an automatically parallelizing

compiler that produces message passing code using
MPI suitable for execution on a distributed-memory
system. The compiler is called the Paraguin Compiler
[5] and is built using the SUIF Compiler [7]. The SUIF
Compiler provides all the tools necessary to build a
parallelizing compiler.

The technology behind the generation of parallel
code and the code to transmit messages containing the
dependent data is beyond the scope of this paper. We
refer the interested reader to [1], [2], [4], [5], [7], and
[8] for background on the details of how this is done. In
this paper we present the code that the compiler
produces without discussing the details of how it was
produced or arguing the correctness of that code.

Figure 1 shows the elimination step of Gaussian
Elimination, which we will use as our running example

and prototype for the techniques presented in this paper.
Given that the problem is partitioned such that each
iteration of the i2 loop is a separate partition, there is a
data dependence between the left-hand side of the
assignment of statement S1 (a[i2][i3]) and the
second array reference (a[i1][i3]) on the right-hand
side that crosses partitions. When these partitions are
mapped to different physical processors,
communication of this value is required.

Figures 2 and 3 show the receive and send loops
that unpack and pack the dependent data between the
reference a[i2][i3] on the left-hand side of the
assignment and the reference a[i1][i3] on the right-
hand side of the assignment. The send loop is executed
by any processor where pidw is the current processor's
id (mypid). Similarly, the receive loop is executed by
any processor where pidr is the current processor's id
(mypid). The parallelized execution loop is inserted
between the two communication loops. The code
shown here does indeed work correctly, although the
performance is poor. The poor performance is due to
the fact that communication and computation are
performed is completely separate steps. This problem is
addressed by overlapping communication with
computation using a techniques described in [5].
However, this technique is out of the scope of this paper
and a step that is performed after the creation of the
communication loops. The techniques we are proposing
in this paper would be performed after the creation of
the communication loops but prior to the overlapping
step.

Within the loop nests that send and receive
messages are various loop variables. These loop
variables have meaning. Take the send loop for
example. Each processor executes that loop nest where
the send processor id (pidw) is itself. It then loops
through all physical processors (pidr) that require data
computed by pidw. Next, the send processor loops
through all partitions it owns (pw) and the partitions that
the receiving processors owns (pr) for which there is

Figure 1. The Elimination Step of Gaussian
Elimination.

for (i1 = 1; i1 <= N; i1++) {

 for (i2 = i1+1; i2 <= N; i2++) {

 for (i3 = N+1; i3 >= i1; i3--) {

 a[i2][i3] = a[i2][i3] – a[i1][i3]

 * a[i2][i1] / a[i1][i1]; (S1)

 }

 }

}

data produced by pw needed by pr. Then the sending
processor loops through all iterations (i1w, i2w, i3w)
executed by pw and all iterations (i1r, i2r, i3r)
executed by pr for which iteration i1w, i2w, i3w
produces data needed during iteration i1r, i2r, i3r.
The receive loop can be viewed in a similar way except
that it is executed by each processor where pidr is
itself.

3 Statement of the Problem
The code generated by the compiler produces

messages containing redundant data. This needlessly
increases the size of messages sent between pairs of
processors as well as the time to pack those messages.
Furthermore, if multiple processors are receiving a
message from the same sending processor, the sending

Figure 2. The Receive Loop for the Elimination Step of Gaussian Elimination.

//RECEIVE loop
pidr = mypid;
if(pidr >= 1 && pidr <= (-2+N)/blksz){
 for(pidw = 0; pidw <= -1+pidr; pidw++){
 printf ("<pid%d>: receive from <pid%d>\n", pidr, pidw);
 MPI_Recv(..., pidw, ...);
 for(pr = 2+blksz*pidr; pr <= min(1+blksz+blksz*pidr, N); pr++){
 for(i1r = max(2+blksz*pidw, 2); i1r <= 1+blksz+blksz*pidw; i1r++) {
 i2r = pr;
 for(i3r = i1r; i3r <= 1+N; i3r++) {
 pw = i1r;
 i1w = -1+pw;
 i2w = 1+i1w;
 i3w = i3r;
 MPI_Unpack(..., &a[i1r][i3r], ...);
 printf("<pid%d, p%d>: unpack a[%d][%d] - Value: %f\n",
 pidr, pr, i1r, i3r, a[i1r][i3r]);
 }
 }

 }
 }
}

Figure 3. The Send Loop for the Elimination Step of Gaussian Elimination.

//SEND loop
pidw = mypid;
if(pidw >= 0 && pidw <= (-2-blksz+N)/blksz){
 for(pidr = 1+pidw; pidr <= (-2+N)/blksz; pidr++){
 for(pr = 2+blksz*pidr; pr <= min(1+blksz+blksz*pidr, N); pr++){
 for(i1r = max(2+blksz*pidw, 2); i1r <= 1+blksz+blksz*pidw; i1r++) {
 i2r = pr;
 for(i3r = i1r; i3r <= 1+N; i3r++) {
 pw = i1r;
 i1w = -1+pw;
 i2w = 1+i1w;
 i3w = i3r;
 MPI_Pack(&a[i2w][i3w], ...);
 printf ("<pid%d, p%d>: pack a[%d][%d] - Value: %f\n",
 pid w, pw, i2w, i3w, a[i2w][i3w]);
 }
 }
 }
 MPI_Send(... pidr ...);
 printf ("<pid%d>: send to <pid%d>\n", pidw, pidr);
 }
}

processor may repack the same information in each
message for each receiving processor, instead of
packing the message once and then sending multiple
times. This further increases the time spent packing
messages.

Take for example the code to send and receive
data from the elimination step of Gaussian Elimination
shown in figures 2 and 3. A sample of the debugging
statements from this sending loop of figure 3 is shown
in figure 4. One can see from figure 4 that the same
array location is packed multiple times in a single
message. This happens when the number of partitions is
larger than the number of processors, which is usually
the case. Each instance of an array location in the
message is destined for a separate partition. However,
since each processor may be responsible for executing
multiple partitions, multiple instances of the same array
element will appear in the message. One can also see
this in the code from the send loop in figure 3. The data
that are packed are the values a[i2w][i3w]. Yet
there is no dependence of the array element subscripts
i2w and i3w and the loop variable pr (which
corresponds to all the partitions that require the data
being packed). Each iteration of the pr loop packs the
same information. Similarly, the receive loop nest
unpacks the same information for each iteration for the
pr loop. Furthermore, the array element subscripts are
not dependent on the receiving processor id (pidr).
So each iteration of the pidr loop repacks the same
message with the same data.

4 Ideas to Speedup Generated Code

We believe we can generate smaller messages, and
reduce packing time by using the following techniques:

1. The size of the messages can be reduced by
replacing FOR loops in the message passing code
with assignment statements (causing them to be
degenerate loops) when the loop variable is
independent of array element subscript variables.

2. The time spent packing can be reduced by
placing an IF statement with the condition that the
pidr is equal to the lower bound within the send
loop code if the receiving processor pidr is
independent of the array element subscript
variables.

Both of these techniques require a check of
independence between the array element subscripts and

the loop variable. The SUIF compiler has the tools
necessary to check for dependence. We expect this to
be fairly easy to implement. This could be
accomplished by looping through each loop variable in
the communication loops (except for pidr) and
performing a dependence test on that loop variable and
the data being packed. If the loop variable of both sides
of the communication is independent of the data being
packed, then the loop can be suppressed using technique
(1) above. The same test can be performed on the
pidr loop variable to determine if technique (2)
applies. The tests we present in this paper are intended
to investigate the effects of these techniques on the
performance and whether the implication justifies
continued work on these ideas.

5 Tests
To test the feasibility of our ideas, we created 5

programs that perform the elimination step of Gaussian
Elimination:

 Program #1 - The Sequential Program

 Program #2 - The original MPI Program
automatically generated

 Program #3 - The MPI Program with redundant
data suppression

 Program #4 - The MPI Program with redundant
repacking suppression

 Program #5 - The MPI Program with redundant
data & repacking suppression

The message passing and main execution loops
used in the prototypes were generated using Linear
Inequality Calculator (LIC) included with the SUIF
compiler [7]. LIC aids in rapidly prototyping systems
for code generation. The loop bounds, partitioning,

Figure 4. Sample from Debug Statements from
Send Loop of Figure 2.

...
<pid0, p2>: pack a[2][2] - Value: 63.000000
<pid0, p2>: pack a[2][3] - Value: 28.000000
<pid0, p2>: pack a[2][4] - Value: 91.000000
<pid0, p2>: pack a[2][5] - Value: 60.000000
<pid0, p2>: pack a[2][6] - Value: 64.000000
...
<pid0, p2>: pack a[2][2] - Value: 63.000000
<pid0, p2>: pack a[2][3] - Value: 28.000000
<pid0, p2>: pack a[2][4] - Value: 91.000000
<pid0, p2>: pack a[2][5] - Value: 60.000000
<pid0, p2>: pack a[2][6] - Value: 64.000000
...
<pid0>: send to <pid1>

partition-to-processor mapping, and last-write tree for
the Gaussian Elimination code of figure 1 were
provided to LIC, which then generated the loops. The
original communication loops for program #2 are shown
in figures 2 and 3.

Program #1 is the sequential version of the
program shown in figure 1. This is used as a control.
Programs 3, 4, and 5 are modifications of Program #2.
In Program #3, we suppress the packing of redundant
data in each message by replacing the pr FOR loops
with an assignment of pr to its lower bound value in
both the send and receive loop nests. Specifically, the
following statement was inserted to replace the pr FOR
loop in the loops shown in figures 2 and 3:

pr = 2+blksz*pidr;

This is a legal modification to the loops because
the body of those loops (the packing of a[i2w][i3w]
and the unpacking of a[i1r][i3r]) is independent
of the variable pr. So only one iteration of the loop is
necessary.

In Program #4, we attempted to suppress the
repacking of the same message for each processor to
which the message is sent. We accomplish this by
inserting the following IF statement inside the pidr
loop and surrounding the packing code in the send loop
nest of figure 3:

if(pidr == 1+pidw){

This has the effect of executing the packing of the
message only for the first iteration of the pidr loop.
Subsequent iterations of the loop do not repack the
message, but simply send the existing message. This
should be done on the send side only, because the
receive loop still needs to unpack the data in the
message.

In Program #5, both redundant data and redundant
repacking were suppressed using the techniques of
Program #3 and Program #4 together.

6 Results
To test the programs, each parallel program was

run on a cluster consisting of 6 Dell PowerEdge 1850s
with 2 Intel Dual Core 2.8 GHz processors with 12
Gbytes of memory and 9 Sunfire X4100s with 2 AMD
Dual Core 2.6 Ghz processors with 8 Gbytes of
memory. The machines are connected using a Cisco
100 Mbps switch. The sequential program was run on

one Dell PowerEdge, while the parallel programs were
run on 4, 8, 12, 16, and 20 processors. The problem
input size ranged from 100 to 1000 in increments of 10.
Each program was run 10 times at each processor/input
size combination, and the runtime results presented in
this section are the averages of the 10 runs. The total
sums of message sizes for each program were also
collected.

The performance of Program #2, the original
parallel program, is shown in figure 5. The runtime of
this program was significantly worse than the sequential
program due to the time spent packing and sending the
large messages. Furthermore, we were unsuccessful in
running the program for some combinations of the
number of processors and the problem size because the
resulting messages were so large that they exceeded the
memory capacity of the machines.

The performance of Program #3 is shown in figure
6. The technique of suppressing the packing of
redundant data allowed the parallel program to run at a
similar speed as the sequential program. The
performance of the parallel program running on 4
processors was actually better than sequential, but this is
due to the fact that those 4 processors reside on the
same machine and use shared memory to implement the
message passing. Although it is not easy to detect using
the same scale for figure 6 as the other graphs, the small
gap between the sequential runtime and the runtime of
the parallel program is narrowing. If the problem size
had been large enough the parallel program should have
run faster than sequential.

Furthermore, we have not implemented
overlapping communication with computation as
discussed in [5]. The code, as described here, will
essentially be executed sequentially because each
processor will receive all of its required data before
proceeding with execution. Likewise, each processor
will not transmit its computed values to processors that
need them until it has finished all of its execution.
Therefore, we cannot expect to do much better than
sequential execution, until we can implement the
technique of suppressing redundant data in the
compiler, which does overlap communication with
computation.

The performance of Program #4, which suppresses the
repacking of messages, is shown in figure 7. This
program performed only slightly better than the original
parallel program. The slight performance improvement
is the result of the time savings for not having to repack
the message. However, one can see that performance is
influenced primarily by the time required to transmit the

0

10

20

30

40

50

60

100 200 300 400 500 600 700 800 900 1000

Problem Size

T
im

e
 (

se
c)

Sequential
4 Processors
8 Processors
12 Processors
16 Processors
20 Processors

0

10

20

30

40

50

60

100 200 300 400 500 600 700 800 900 1000

Problem Size

T
im

e
(s

ec
)

Sequential
4 Processors
8 Processors
12 Processors
16 Processors
20 Processors

0

10

20

30

40

50

60

100 200 300 400 500 600 700 800 900 1000

Problem Size

T
im

e
 (

se
c)

Sequential
4 Processors
8 Processors
12 Processors
16 Processors
20 Processors

messages, not by the time spent executing instructions
that copy values from one memory location to another,
which packing does. Furthermore, the suppression is
only relevant on one side of the communication (the
send side).

Program #5 combined the data and repack
suppression techniques. The timing results are not
shown because they are almost identical to the results of

0

100

200

300

400

500

600

700

800

900

1000

100 200 300 400 500 600 700 800 900 1000

Problem Size

T
o

ta
l d

a
ta

 t
ra

n
sm

itt
e

d
(M

B
)

4 Processors
8 Processors
12 Processors
16 Processors
20 Processors

0

100

200

300

400

500

600

700

800

900

1000

100 200 300 400 500 600 700 800 900 1000

Problem Size

T
o

ta
l d

a
ta

 t
ra

n
sm

itt
e

d
(M

B
) 4 Processors

8 Processors
12 Processors
16 Processors
20 Processors

Program #3. It appears that combining the two
techniques does not provide a significant advantage
over implementing data suppression alone.

Figures 8 and 9 show the total sizes of all
messages sent between processors for the input size and
number of processor combinations. Program #3 greatly
reduces the size of the messages, which is the main
reason for the performance improvement. It also allows
the problem size to increase, since the sizes of the
messages are not pushing the memory limits of the
machines.

Program #4 actually increased the total bytes
transmitted. This is because the last processor may
have a smaller set of partitions to execute. So the
messages sent to the last processor are likely be smaller.
When we suppress repacking of the messages, the
messages sent to the last processor may have too much
data. This does not present a problem, but since the
performance was only marginally improved, it is not
worth it. In a distributed-memory environment,
anything we can do to reduce the message size is more

Figure 9. Total Bytes Transmitted After Suppressing
Redundant Data

Figure 8. Total Bytes Transmitted for Original Loops

Figure 7. Runtime when Repacking of Message is
Suppressed.

Figure 6. Runtime when Packing of Redundant
Data is Suppressed.

Figure 5. Runtime for Original Loops

important than anything we can do to reduce the number
of instructions executed.

Program #5 did not increase the total bytes
transmitted from Program #3, but it did not decrease it
either. Again, it is not worth the effort to suppress
repacking when the dominant factor for performance in
a distributed-memory environment is the number of
bytes transmitted.

7 Conclusions
In this paper we tried two techniques to improve

the performance of parallel code generated by an
automatic parallelizing compiler to run on a distributed-
memory system using message passing. The purpose of
this experiment is to determine if there is reason to
pursue these techniques and make the effort to
implement them in a real parallelizing compiler. The
two techniques that we presented in this paper are: 1)
suppress the redundant data within messages sent
between processors, and 2) suppress the repacking of
the same message for different processors.

What we discovered during this experiment is that
it is more important to reduce the message sizes than to
reduce the amount of code executed. In a distributed-
memory environment where messages are transmitted to
pass dependent data between processors, the size of the
message is a dominant factor on the runtime of the
program. Reducing the redundant information in
messages has a large impact on the performance.
Furthermore, reducing the message sizes allows one to
run the program on larger input sizes, which is another
very important consequence of this technique.

The second technique of suppressing the repacking
of the same message that is sent to multiple processors
had only a marginal improvement in performance. The
increased performance was due to the fact that fewer
instructions are executed. However, reducing the
number of instructions executed has only a small impact
on performance as compared to the impact of reducing
message sizes. In fact, suppressing the repacking of
messages can lead to larger messages being sent to
some processors. It is very important to make every
effort to keep the number of bytes transmitted as small
as possible, even at the expense of executing more
instructions.

We anticipate the implementation of the technique
to suppress the packing of redundant data in messages
to be fairly straightforward. Fortunately, the SUIF

compiler has techniques available to test for the
dependence between two variables. This test is
essential for determining if a loop can be replaced by a
degenerate loop.

The results of this experiment will allow us to
move forward with the implementation of the first
technique. We expect to demonstrate that this is a
worthwhile optimization for a parallelizing compiler to
apply. Also as a result of this experiment, we will not
spend time implementing the second technique, since it
is unlikely to result in any significant improvement.

8 References
[1] S. P. Amarasinghe and M. S. Lam,
“Communication optimization and code generation for
distributed memory machines,” In the Proceedings of
The ACM SIGPLAN '93 Conference on Programming
Language Design and Implementation (PLDI), 126–
138, Albuquerque, New Mexico, June 1993.

[2] U. Banerjee, “Loop Transformations for
Restructuring Compilers: The Foundations,” Kluwer
Academic Publishers, Boston, MA, 1993.

[3] Michael Classen, “Automatic code generation for
distributed memory architectures in the polytope
model”, Ph.D. Thesis, Universitat Passau. September
30, 2005.

[4] C.S. Ferner, “Revisiting communication code
generation algorithms for message-passing systems,”
International Journal of Parallel, Emergent and
Distributed Systems (JPEDS), Vol. 21 No.5, 323–344,
October 2006.

[5] C.S. Ferner, “The Paraguin compiler---Message-
passing code generation using SUIF,” in the
Proceedings of the IEEE SoutheastCon 2002, 1–6,
Columbia, SC, April 5-7, 2002.

[6] G. Goumas, Drosinos, Athanasaki, Koziris.
“Message-passing code generation for non-rectangular
tiling transformations”, Parallel Computing, Vol. 32,
711–732, 2006.

[7] “The SUIF Compiler System,” Computer Science
Department, Stanford University,
http://suif.stanford.edu/.

[8] J. Xue, “Loop tiling for Parallelism,” Kluwer
Academic Publishers, Boston, MA, 2000.

