
JXPL: An XML-based Scripting Language for Workflow Execution in a Grid
Environment

Carla S. Hunt and Clayton S. Ferner
Department of Computer Science

University of North Carolina at Wilmington
cferner@uncw.edu

Jeff L. Brown
Department of Mathematics

University of North Carolina at Wilmington
brownj@uncw.edu

Abstract

JXPL is a new functional scripting language that uses
XML syntax. JXPL is intended to be a workflow language
that easily interacts with web and grid services. There are
built in web and grid clients that can communicate with a
variety of services. This facilitates the creation of workflow
editors and other applications designed for grid
environments and leaves application developers free to
concentrate on the implementation of the user interface. In
this paper we give our motivation for JXPL and describe
JXPL so that others may use the language. To aid our
discussion, we introduce the grammar for JXPL using
Extended Backus Naur Form (EBNF). We also include
examples and detail predefined functions. We conclude
with current and future work.

1. Introduction

Grid computing has received much attention in the

research community in recent years. Grids offer users
access to computing resources such as processing cycles,
software, data, storage, etc. in a seamless environment.
Grids also offer universities, corporations, and other
organizations a way to make better use of under-utilized
resources.
 Since grid computing is in its early stages of
development, the user interfaces are still rather crude. Most
grid software uses command-line interfaces. Two new areas
of research related to grids are portals and workflow
editors. Portals are web-based interfaces that allow users to
submit jobs to a grid and monitor grid resources. Workflow
editors allow users to create custom workflows of
computation that may include computation to be performed
in a grid environment.
 GridNexus is one such workflow editor. GridNexus uses
a scripting language called JXPL to describe the workflow,
which can be executed by an interpreter. JXPL features
generic web and grid clients. This makes it easy for
applications such as GridNexus to interact with web and
grid services.

The purpose of this paper is to describe JXPL in precise
terms so that others will be able to develop JXPL scripts.
JXPL is actually not intended to be a language written by
programmers, but rather generated by applications such as
GridNexus. We wish to encourage developers to create
applications that generate JXPL as a means of executing
scientific workflows capable of interacting with grid and
web services. This paper should serve as a reference to
interested readers desiring to create new applications that
can produce JXPL.
 This paper is organized as follows: section 1.2 explains
why it is important for there to be a language like JXPL,
section 2 is an overview of the Lisp language, particularly
the characteristics that have been most influential on the
design of JXPL, section 3 describes the role of XML,
section 4 provides the grammar for JXPL using Extended
Backus Naur Form and specifics about some functions, and
section 5 is future work and conclusions.

1.1 Motivation for JXPL

The flexible and extensible design of the JXPL scripting
language has been instrumental in the creation of
GridNexus, a powerful, graphical workflow editor for web
and grid services. The JXPL language provides abstraction
capabilities, support for recursion, and simplistic data
structures that meliorate the difficulties associated with
executing complex, graphical workflows. One of the most
important benefits of using JXPL is that it separates the
Graphical User Interface (GUI) from the underlying
execution model. There are three reasons why this is
important. First, this simplifies the implementation of the
GUI. Second, this allows other tools besides GridNexus to
create JXPL and therefore take advantage of its features.
Third, the execution of the workflow can be performed off-
line by other processors than the one interacting with the
user. This allows for batch mode processing as well as
parallel execution, which we discuss in sections 4 and 5.
 JXPL has functions that operate as generic web and grid
clients. From the perspective of the GridNexus user, there
is a seamless view of a variety of geographically
independent resources such as grid services, web services,
data sources, and applications. The combination of a

graphical interface and predefined functions for web and
grid service clients makes it possible for a novice user to
create workflows that can represent fairly complex sets of
tasks.
 Furthermore, each JXPL interpreter has a Uniform
Resource Identifier (URI). The prefix of the URI indicates
the protocol used to communicate with that interpreter; that
is, whether it is implemented locally, as a grid service, or as
simply a remote application [1]. This gives users the
flexibility to determine where units of work are computed.
 Finally, JXPL programs can be used to manage Grid
Data Service interactions. Open Grid Services Architecture
– Data Access and Integration (OGSA-DAI) offers a
special type of Globus Toolkit 3 (GT3) service called a
Grid Data Service (GDS). For example, a GDS that queries
a database can deliver its output to another GDS that
transforms the data in some way and then delivers the result
to GridFTP, or a file system, or even another service. An
OGSA-DAI XML script determines the actions of a GDS.
Creating a GDS for accessing an existing data source such
as a relational database, an XML data source, or a file
system is simply a matter of editing the OGSA-DAI
configuration files. However, managing the interaction
between Grid Data Services is complicated.
 Consider the case where there are two GDSs, a source
and a sink. The output of the source is to be delivered to the
sink. The steps required to manage this interaction are:

1. Create the sink and store its handle.
2. Start the sink in its own thread waiting for input.
3. Create the XML script to control the source,

incorporating the handle of the sink.
4. Start the source service.

This sequence of steps is easy to implement in Java, and the
OGSA-DAI Application Programming Interface (API)
provides many helper classes to aid in creating the
necessary XML scripts. However, an interactive workflow
engine must generate code dynamically, which is not easy
to do with Java. JXPL can manage the interaction between
Grid Data Services. In fact, some of JXPL's features, such
as multi-threading, were added to make this possible.

2. Lisp

JXPL is a functional language with a Lisp-like design.

Lisp is the oldest and most widely used functional
programming language. Although traditionally associated
with the field of Artificial Intelligence, Lisp has also been
used with a high level of success in other domains. Yahoo!
Store, one of the most successful e-commerce software
applications in use today was written in Common Lisp by
Paul Graham [2]. In this section we examine Lisp's power
and simplicity, features that inspired JXPL's design.
 One of the most appealing features of Lisp is the
simplicity of its data structures: everything is either an
Atom or a List. Atoms are primitive data types such as
numbers, strings, and variables. Lists contain Atoms or

other Lists, which allows for nesting of data structures. In
both languages, the list data object is all-inclusive, meaning
it can be used to define programs, data structures, and
functions.
 To illustrate the simplicity of the language, Figure 1
below contains a short grammar for the Lisp language using
Extended Backus Naur Form (EBNF) notation. EBNF is a
metalanguage used to describe the rules for a given
language. We refer the reader to [4] for specifics on EBNF.
We use the convention that non-terminals are capitalized,
terminals are lowercase, x|y means one of either x or y, {x}
means zero or more occurrences, and [x] means zero or one
occurrence. For simplicity, we have omitted the rules for
the non-terminals SYMBOL, NUMBER, STRING, and
CONSTANT.

S-EXPR → ATOM | LIST | ε
LIST → ({S-EXPR})
ATOM → SYMBOL | NUMBER | STRING |

CONSTANT
Figure 1. Extended Backus-Naur Form (EBNF) for the

Lisp Language
 We read the grammar in Figure 1 to mean that the
syntactic structures of the Lisp language are as follows: 1)
S-Expressions are Atoms, Lists or nothing 2) Lists are zero
or more S-Expressions surrounded by parentheses, and 3)
Atoms are symbols, numbers, strings, and constants. It is
also evident from the grammar that nesting is a natural part
of the language structure.

3. Extensible Markup Language (XML)

JXPL scripts are written in XML. The parentheses of

Lisp are replaced by more descriptive XML tags. Using
XML to describe JXPL provides advantage in both form
and function. JXPL uses the XML 1.0 specification, which
is part of a widely used international standard [5]. This
means JXPL is compatible with XML-aware programs,
protocols, and parsers. For example, the Simple Object
Access Protocol (SOAP) is the protocol used to transmit
messages between grid and web services. Since SOAP is
written in XML, JXPL integrates nicely with SOAP.
 Both Lisp and XML are languages whose readability is
poor. However, JXPL was intended to be generated by
programs rather than programmers, and the XML format
makes it easy for programs to write JXPL scripts. The
result of executing a JXPL script is also XML.
 Since all objects in the JXPL language are represented
by XML elements, JXPL objects can be treated as if they
are the same data type. This is analogous to a purely
functional Lisp dialect in which all objects are essentially
typeless. In either case, the power of the functional
programming paradigm is derived from the high level of
abstraction that is achieved when object typing is separated
from the programming model [4]. As a result, JXPL objects
can easily be nested and evaluated recursively, which

enables JXPL scripts to be written dynamically while
preserving the flow of execution.
 The ability to nest objects and evaluate them recursively
makes it possible to accurately depict dependencies
between tasks in a workflow. This feature of the JXPL
language is especially useful in a graphical workflow
environment because workflows are inherently nested or
recursive. In fact, Ptolemy II, the foundation of the
GridNexus GUI, uses an XML modeling markup language
named MoML to describe Ptolemy II models. However,
MoML is a modeling language, not a scripting language
[6].

4. JXPL Syntax

The main goal of this paper is to describe JXPL in terms
that are specific enough that someone can use the language,
or develop a tool to produce JXPL scripts. In this section,
we provide a grammar for JXPL. Also, because JXPL
scripts must be well-formed XML documents, we highlight
the syntax rules for all well-formed XML documents. It is
our intention that, by integrating these means of language
description, we will provide a rich and useful reference for
the JXPL language.
 We begin our description of JXPL with the syntactic
requirements shared by all well-formed XML documents.
All XML documents must have a root element, and the root
element for a JXPL script must be a single expression:
either a JXPL Atom or a JXPL List. Tag names may be
qualified with the JXPL namespace, which is
http://www.jxpl.org/script. All elements must have
closing tags, elements are case sensitive, and both tags must
be the same case. Elements must be properly nested, and
attribute values must be quoted [7].
 Figure 2 presents the EBNF grammar for the JXPL
language. We have omitted the rules for XS:STRING and
XS:INTEGER, which are provided in the XML 1.0
specification [5]. We use the following conventions in the
JXPL grammar: x|y means one of either x or y, {x} means
zero or more occurrences, [x] means zero or one
occurrence, terminals are underlined, and non-terminals are
capitalized.
JXPLEXPR → ATOM | LIST | ε
LIST → <list> {JXPLEXPR} </list>
ATOM → SYMBOL | STRING | INTEGER |

RATIONAL | DECIMAL |
PRIMITIVE

SYMBOL → <symbol name=”XS:STRING”> </symbol>
PRIMITIVE → <primitive name=”XS:STRING”> {PROPERTY}

</primitive>
PROPERTY → <property name=”XS:STRING”value=”XS:STRING”>

</property>
STRING → <string value=”XS:STRING”></string>
INTEGER → <integer value=”XS:INTEGER”></integer>
DECIMAL → <decimal value=”XS:INTEGER[.XS:INTEGER]

[scale=”XS:INTEGER”] “>
</decimal>

RATIONAL → <rational numerator=”XS:INTEGER”

 denominator=”XS:INTEGER”>
</rational>

Figure 2. Extended Backus-Naur Form (EBNF) for the
JXPL Language

 The primitive construct is used to describe a function
call. XS:STRING type attributes may contain the legal
characters of Unicode and ISO/IEC10646, line feeds,
carriage returns, and tab characters. XS:INTEGER may
contain an integer of arbitrary length [5]. Because the
language is XML, any tag for which there is no nested
information may be opened and closed in a single tag as per
the rules of XML. For example, the tag <integer
value=”3”></integer> may also be written as <integer
value=”3”/>. For simplicity, we have omitted these extra
rules from the grammar.
 To demonstrate the grammar, Figure 3 shows a simple
example of JXPL. This example uses the function named
Arithmetic. The function is called with one property
named operation which has the value multiply and two
operands which are the rational numbers 7/5 and 3/11. The
result of evaluating this script is:
<rational numerator="21" denominator="55"/>.
<list>
 <primitive name="Arithmetic">
 <property name="operation" value="multiply"/>
 </primitive>
 <rational denominator="5" numerator="7"/>
 <rational denominator="11" numerator="3"/>
</list>

(* 7/5 3/11)

(a) JXPL Example (b) Equivalent
in Lisp

Figure 3. Multiplication using the JXPL Arithmetic
Function

4.1 JXPL Simple Types

JXPL simple types correspond to Lisp Atoms and

include symbols, strings, integers, rationals, decimals and
function names. However, in contrast to Lisp, atoms are not
implicitly typed. Instead, the type is apparent in the name
of the tag. This may limit the expressiveness of the
language but specifying type reduces the complexity of the
JXPL interpreter. Like Lisp, JXPL does not provide an
explicit Boolean type. False is represented as an empty list
<list/>, and everything else is considered to be true.
 The JXPL symbol element is functionally similar to that
of the Lisp symbol. In many other languages, identifiers,
variable names, function names, and constants are viewed
as separate elements. Instead, the symbol is a multipurpose
element, which is an instrumental part of the powerful
abstraction capabilities in both languages. For example, in
JXPL a symbol can legally represent the number ten, the
string value "ten", a function named "ten", or a variable
named "ten".
 JXPL includes three defined numeric types: integer,
decimal and rational. The integer numeric type may be
positive or negative but must be a numeric value without a

fractional component. The decimal numeric type may be
positive or negative and may contain a decimal point.
However, the decimal type in JXPL may also contain a
scale property, which specifies the number of decimal
places. If the scale property is not specified, the JXPL
interpreter uses a default scale value of twenty. The rational
numeric type requires both a numerator and denominator of
integer types.
 JXPL implements the numeric types using either the
BigInteger or BigDecimal Java classes. BigDecimal
provides support for immutable, arbitrary-precision, signed
decimal numbers. A BigDecimal has an arbitrary precision
integer unscaled value and a non-negative 32-bit integer
scale, which represents the number of digits to the right of
the decimal point [8]. BigInteger provides support for
immutable, arbitrary precision integers and all operations
behave as if integers were represented in two's complement
notation [9].

4.2 JXPL Primitives

The JXPL primitive is analogous to a function. The

primitive tag is used to call a function. The syntax of a
function call with the primitive tag is:

<list>
 <primitive name=”function name”>
 properties
 </primitive>
 arguments
</list>

The function name is provided as an attribute to the
primitive tag. A list contains the primitive and arguments.
Similar to Lisp, the JXPL interpreter assumes that the first
atom of a list is a function with its arguments following.
 JXPL has many predefined functions. In this section we
discuss the functions that are most relevant to grid
computing: Defun, WSClient, GSClient, and Prog.

4.2.1. Defun. JXPL is designed to be extensible. Defun
allows users to define their own functions. Figure 4 is an
example of a user-defined function called Myadd that uses
the JXPL Defun primitive. The Myadd function is a simple
function that defines the operation x + 2. The syntax of
Defun is:

<list>
 <primitive name =”Defun”/>
 <symbol value=”function name”/>
 <list> parameters </list>
 Function body
</list>

<list>
 <primitive name="Defun"/>
 <symbol name="Myadd"/>
 <list>
 <symbol name="x"/>
 </list>
 <list>
 <primitive name="Arithmetic">
 <property name="operation"
 value="add"/>
 </primitive>
 <symbol name="x"/>
 <integer value="2"/>
 </list>
</list>

<list>
 <primitive name="Myadd"/>
 <integer value=”4”/>
</list>

(a) Defining Myadd (b) Calling Myadd
Figure 4. Defining and calling the function Myadd

4.2.2. Grid Primitives. Two of the most significant
functions are the WSClient and the GSClient. These
functions are designed to be generic clients for web and
grid services. A detailed discussion of web and grid
services is outside the scope of this paper. For more
information on how these services operate, we refer the
reader to [10]. Here we assume the reader has a basic
understanding of these topics.
 To use the Web Service Client function, the URL of the
Web-Services Description Language (WSDL) is needed to
generate a call to the appropriate method of the web
service. The arguments to the WSClient are the WSDL, the
name of the method of the service to be called, and any
arguments to that method. Figure 5 shows the JXPL script
that is produced for a simple web service called MyMath.
This service has a method called “squared” which returns
the square of its argument. The result returned from the
script in Figure 5 is <integer value=”4”/>.
<list>
 <primitive name=".ws.WSClient"/>
 <string value=
 "http://beowulf.bear.uncw.edu:8080/axis//MyMath.jws"/>
 <string value="squared"/>
 <integer value="2"/>
</list>

Figure 5. JXPL script request to MyMath Web Service
and result

 The implementation and use of a generic grid service is
more complicated. The GSClient needs the URL of the
Factory service, the grid service instance name, the port
type class name, and the stub class name. This information
is provided to the GSClient via property tags. The method
name and its arguments are provided in a list that follows.
Also, both the service stub and service jar files need to be
in the class path where the JXPL interpreter will execute.
Figure 6 below shows the JXPL script for a grid service
client configured to communicate with a grid service called
MathService. In this example, we are contacting the
Factory only, not a specific instance.

<list>
 <primitive name=".ws.GSClient">
 <property name="instanceName"/>
 <property name="factoryUrl" value=
 "http://beowulf.bear.uncw.edu:8080/ogsa/services/uncwCounter/
 MathService"/>
 <property name="portType"
 value="uncwCounter.stubs.MathService.MathPortType"/>
 <property name="stubName" value="uncwCounter.stubs.
 MathService.bindings.MathServiceSOAPBindingStub"/>
 </primitive>
 <list>
 <string value="add"/>
 <integer value="1"/>
 </list>
</list>

Figure 6. Simple Grid Service Client

4.2.3. Prog. Since XML files must have a single root
element, this restricts JXPL scripts to having a single
workflow. However, we can have several workflows,
which may or may not have a dependency relationship,
contained within one script by using the Prog function. The
Prog function accepts a list of lists and evaluates each
sublist individually in the order in which they appear. The
return value is the result of the last list evaluated.
 In order to separate the GUI from the execution of a
workflow, the JXPL interpreter can be run as a grid service,
or it can be run remotely using Remote Method Invocation
(RMI) and through a custom HTTP server. The Prog
function has a property called name, for providing the URI
of the interpreter that should execute its sublists. Every
JXPL interpreter has a URI that indicates the protocol used
to contact it. For example, a URI prefix such as “ogsa://...”
indicates an interpreter that is running as a grid service,
“rmi://...” indicates an interpreter that is contacted through
RMI, and “http://...” indicates an interpreter this is available
as a web service. If the processor is local, then the URI
prefix may contain the word local or simply be omitted.
The local processor inspects the URI of the Prog, and if the
name property is absent, has no prefix, has a prefix of
local, or has a URI that represents the current interpreter,
then it evaluates the Prog sublists locally. Otherwise, the
interpreter sends the Prog script to the remote interpreter
for evaluation and waits for its response.
 The Prog function also has a property called fork, which
indicates that the current interpreter should create a new
thread to execute the sublists. This is useful for allowing
the current interpreter to return immediately while
processing takes place in the background, either remotely
or locally. Since it is possible to have multiple threads
executing Prog’s on various processors, a mechanism for
synchronization is needed. This is accomplished through
the property called waitfor. The waitfor property takes the
URI name of another Prog whose termination must precede
the evaluation of this Prog.
 Figure 7 shows an example of using Prog’s. The first
Prog runs locally and evaluates the sub-Prog’s. Two new
threads are created on the two machines bec and firedev to
evaluate each of the two sub-Prog’s. The local Prog returns

immediately with a result of true. The interpreter on bec
waits until Prog2 completes before starting the evaluation
of Prog1.
<list>
 <primitive name="Prog"/>
<list>
 <primitive name="Prog">
 <property name="name" value="{ogsa://bec.bear.uncw.edu:8080/ogsa/
 .../JxplInterpreter}prog1"/>
 <property name="fork" value="true"/>
 <property name="waitFor">
 <symbol name="{ogsa://firedev.bear.uncw.edu:8080/ogsa/
 .../JxplInterpreter}prog2"/>
 </property>
 </primitive>

Prog1 does some computation here after Prog2 completes
</list>

<list>
 <primitive name="Prog">
 <property name="name" value="{ogsa://firedev.bear.uncw.edu:8080/
 ogsa/.../JxplInterpreter}prog2"/>
 <property name="fork" value="true"/>
 </primitive>

Prog2 does some long computation here
</list>
</list>

Figure 7. Example of Prog Function
 Another feature that is necessary once JXPL scripts are
being executed in multiple threads and multiple processors
is the ability to access remote data. This is accomplished
by allowing symbols also to have URIs. If the URI of a
symbol indicates that it is non-local, then the local
interpreter makes a request for its value from the remote
interpreter provided in the URI of the symbol. For
example, if Prog2 in Figure 7 above sets a variable called x,
then Prog1 could access x by:

<jxpl:symbol name=
 "{ogsa://bec.bear.uncw.edu:8080/ogsa/.../JxplInterpreter}/x"/>

5. Future Work and Conclusions

In this paper, we provided a specification of the JXPL

scripting language. It is an XML-based scripting language
inspired by LISP. JXPL is the language used to describe
and execute workflows created using the GridNexus
workflow editor. JXPL includes functions that serve as
generic grid and web services, making it easy for novice
users to create workflows that interact with these services.
There are several nice features of JXPL:

1. The execution is separate from the graphical
interface allowing for batch mode and parallel
execution

2. JXPL is based on Lisp, making it elegantly simple
and easily extensible

3. JXPL uses XML so that it can easily be
transmitted via SOAP

4. Different parts of a workflow can be executed by
different processors using different
communication protocols (OGSA, RMI, or HTTP)

5. Because the JXPL interpreter is implemented in
Java, it is easily ported to different platforms

6. JXPL can easily make use of available and idle
processors

The first five features above lead up to the last one.
Previously, making use of the free cycles of various
computers owned by an organization was not an easy task.
In particular, one would need to install special software
such as the Globus toolkit or MPI and possibly an
alternative operating system such as Linux. One could also
develop a Java application that would allow a user to farm
out work to idle processors. However, this is precisely
what JXPL is. To make use of idle processors with JXPL,
one simply downloads and runs a jar file of the JXPL
interpreter. Using GridNexus, the user can specify that
certain parts of the workflow be executed on the available
machines. Although this requires the user to download the
jar file, we are considering pushing the file to the available
machines, making the setup even easier.
 We are in the process of experimenting with this
technology. We are currently using JXPL to run a
primality prover based on a deterministic polynomial time
algorithm by Agrawal, Kayal, and Saxena [11]. The key to
this algorithm is that the work can be divided into
independent tasks. Using 34 idle machines running
Windows XP, we have been successful in proving the
primality of a 25 digit number in 1 minute, a 50 digit
number in 15 minutes, and an 80 digit number in 5 hours
and 40 minutes. We are not yet ready to publish the results
of this experimentation since we are still developing this
technology and we have not yet established a baseline
against which to compare the performance. However, we
are confident that we will be able to demonstrate speedup
since the primality proving algorithm uses independent
tasks and we have several hundred desktop computers
available for use.
 Another application that we are in the process of
developing is animation rendering, which is also
computationally expensive but can be done with
independent tasks. We hope to make it even easier to
create new applications that can run in a distributed
environment. We would like to encourage others to
contribute to JXPL as well as to create new applications
that will use JXPL.

6. Acknowledgements

This work is supported in part by the University of
North Carolina Office of the President, UNC Wilmington’s
Information Technology Systems Division, and the
National Science Foundation under Grant No.
DBI0234520.

7. References

[1] J.L Brown and C.S. Ferner. GridNexus and JXPL: A Grid
Services Workflow System. globusWORLD Boston, MA,
February 7-11, 2005. http://www.globusworld.org

[2] R.St. Amant and M.R. Young, “Links: common lisp resources
on the web,” Intelligence, vol. 12, no. 3, pp. 21-23, 2001.

[3] K.H. Sinclair and D.A. Moon, “The philosophy of lisp,”
Communications of the ACM, vol. 34, no. 9, pp. 41-46, Sept.
1991.

[4] R.W. Sebesta, Concepts of Programming Languages, 4th ed.
Reading, MA: Addison Wesley Longman, Inc., 1999, pp. 120-
122, 569-572.

[5] F. Yergeau. (2004 February). Extensible Markup Language
(XML) 1.0 (Third Edition). W3C Recommendation. Cambridge,
MA. [Online]. Available: http://www.w3.org/TR/2004/REC-xml-
20040204

[6] E.A. Lee and S. Neuendorffer, “MoML-A Modeling Markup
Language in XML-Version 0.4,” University of California at
Berkeley, Tech. Memo. ERL/UCB M 00/12, Mar. 2000.

[7] J.E. Refsnes. (2004 October). XML Schema Tutorial. Refsnes
Data. Norway. [Online]. Available:
http://www.w3schools.com/schema/default.asp

[8] Sun Microsystems, Inc., BigDecimal (Java 2 Platform SE
v1.4.2). [Online]. Available: http://java.sun.com/j2se/1.4.2/
docs/api/java/math/BigDecimal.html

[9] Sun Microsystems, Inc., BigInteger (Java 2 Platform SE
v1.4.2). [Online]. Available: http://java.sun.com/j2se/1.4.2/docs/
api/java/math/BigInteger.html

[10] J. Joseph, M. Ernest, and C. Fellenstein, “Evolution of grid
computing architecture and grid adoption models,” IBM Systems
Journal, vol. 43, no. 4, pp. 624-645, 2004.

[11] R. Ramachandran, “A prime solution,” Frontline: India's
National Magazine, vol. 19, no. 17, pp. 1-7, Aug. 2002.

