
Toward a Graphical User Interface for Grid Services

Michael Wood Clayton Ferner Jeff Brown
Department of Computer Science

University of North Carolina at Wilmington
Wilmington, NC 28403

{mtw9788,cferner,brownj}@uncw.edu

Abstract

The goal of the UNCW Grid project is to produce a

user-friendly graphical environment for assembling and
executing Grid applications. In this paper, we provide
examples of the work done for this ongoing project. In
particular we demonstrate a “drag-and-drop” approach
to assembling complex Grid applications from individual
Grid services. We also show how our graphical
environment interacts with existing services to install and
execute user applications on remote machines.

1. Introduction

Grid services are one of the most intriguing areas in
the computer science field and are likely to have a
significant impact on the scientific and business arenas in
the near future [1]. A Grid is a networked infrastructure
that enables collaborative use of distributed resources,
using general purpose protocols and interfaces, and
operates in an environment that is free of centralized
control. The goal of a Grid is to eliminate organizational
and geographical boundaries and integrate resource
islands so that these resources are available to all users.

Currently, interacting with Grid services can be a
tedious and complex process. Presently, a user must be
capable of writing Java™ client code that incorporates
Open Grid Services Infrastructure (OGSI) [3] and Grid
Security Infrastructure (GSI) [3] classes. Specifically, this
means creating an interface, generating the Web-Services
Description Language (WSDL), generating the client side
and server side stubs, implementing the interfaces,
creating the deployment descriptor (WSDD), generating
the jar and gar files, and finally deploying the service [3].

Furthermore, many demonstrations of Grid services
use command line interfaces, and the processing is
performed in batch mode. Although this is functional, it
appears from the user’s point of view to be no different
than the computing model used for supercomputing since
the 1950s.

As a means of facilitating the adoption of Grid
technologies by the scientific community, we have

developed an innovative graphical user interface (GUI) to
interact with Grid services and applications. A GUI
interface to a Grid will become an essential component of
the Grid just as the web browser is essential to the World
Wide Web. It is very difficult to explain the benefits of
URLs and protocols such as HTTP to a user without using
a browser. It took the graphical format of web browsers
for users to comprehend and visualize the power of the
Web.

Our project has three components. The first is a set of
Grid services for access to a variety of applications. The
second is a new language called JXPL which is designed
for scripting Web and Grid services. Finally, there is the
GUI for creating JXPL scripts. Although we introduce
JXPL, it is out of the scope of this paper.

The paper is organized as follows: section 2 gives
background information about the GUI and JXPL along
with a simple example; section 3 provides details of the
interface between the GUI and a Grid service along with
an example; section 4 discusses the creation of new
abstractions and functionality; and section 5 gives some
concluding comments.

2. Background

2.1 UNCW GUI Implementation

The UNCW GUI is based on Ptolemy [5], an open
source project from the University of California at
Berkeley. By design, the GUI is intended for users with
little or no programming experience. However, the GUI
may be used by more advanced users as well. Figure 1 is
a screenshot, which we will describe in detail below, of
the GUI. It has modules shown as boxes that consist of
source code to execute a specific operation along with
input and output ports. The input ports allow parameters
to be passed into the module. For example, a text box
containing a file name can be connected to a module that
contains source code to perform a file transfer. An output
port can be connected to a display module, such as a text
display, or the input port of another module. More

complex applications are created by chaining together
several modules.

Working within the GUI environment is fairly easy
and straight forward. A frame in the upper-left corner
provides convenient access to system tools and additional
module libraries. The system tools include objects such
as text boxes, HTML output displays, and file I/O
modules. The user library modules can be user defined or
obtained from other authors. To construct new
workflows, a user drags a module from the module library
window onto the palette. The modules on the palette can
then be connected by clicking on the port of one module
and dragging to a port of another module.

2.2 JXPL

To give the modules real functionality, we created a

new scripting language called JXPL. JXPL is a LISP
inspired language whose scripts are written in XML.
DOM elements replace the LISP structures of atom and
list, and XML tags supplant the endless parentheses found
in LISP S-expressions. Figure 2 shows a simple JXPL
example that multiplies 3 and -7/22.

2.3 Google™ Search Example

The first example demonstrates usage of the GUI to

perform a Google™ Search and process the results of that
search. Specifically, we are interested in finding all of the
links (anchors) in the pages that the Google™ search
finds. Figure 1 shows the work flow to perform this
processing. The first three modules produce a JXPL
script. The module labeled Google Search contains the
string “Globus GT3” which is the search string. The
Google Search module writes JXPL script to perform the
Google™ search on the search string and obtains a list of
URLs. The list of URLs is piped into the HTTP module.
The HTTP module writes script that obtains the actual
HTML files for each URL. The Tag Filter module writes
script that filters the HTML code and outputs only the
certain items that have been prescribed through a
parameter box. The parameter box can be accessed by
right-clicking on the module and selecting “Configure.”
For this example, the Tag Filter module is configured to
return anchors (i.e. returns all <a> tags). The JXPL
Interpreter module executes the script and returns an
XML result. The XSL module produces HTML source
code according to the style sheet provided by the
Constant Value box. The output of the XSL module is
then saved to disk by the Tmp File module. Finally, the
results are exhibited in a HTML display window. Figure
3 shows the results of running the work flow described in
Figure 1. This example demonstrates the look and feel of
the GUI as well as how various modules can be linked
together to form one application.

3. Using the GUI with Grid Services

In order to make use of Grid services and applications
using the GUI, we need an interface between a Grid
service and JXPL. We would like to use the GUI to run a
variety of applications on a variety of systems, including
high performance and parallel systems. Our approach is
to develop a generic Grid service which executes on
remote machines. This service needs to be capable of
executing any desired application as well as a few basic
operations such as a file transfer. The Generic Grid
Service is a Java program that is deployed as a service on
a remote machine. The API of the service is shown in
Figure 4.

A client Java program can be easily written and run on
the local machine to interact with the Generic Grid
Service. The client can start an application and then
interact with it through calls to the read() and write()
methods. The client can transfer files to the remote
machine by using the setOutFile(), outFile(), and the
fileTransfer() methods. The client can also transfer files
from the remote machine by running the Unix “cat”
program, using the read() method, and storing the
returned String to a local file. Since we want to interact
with the Generic Service using the GUI, the JXPL code
will be used as the client program.

The Generic Grid Service uses a configuration file to
determine what applications are available to the remote
user. Requests to run applications not included in this file
are denied. In section 4, we discuss a Registration service
that allows authorized users to add new applications to the
configuration file.

3.1 Traveling Salesman Problem Example

In this example, we will use a parallel implementation

of a program to solve the Traveling Salesman Problem
(TSP) that runs on a cluster of computers. This problem
was chosen because it is relatively easy to implement in
parallel and makes use of other modules in the GUI.

In Figure 5, eleven zip codes are entered in text boxes
and serve as the initial inputs. The Distances module
creates JXPL script that contacts MapsOnUs.com to get
the pair wise distances between each pair of zip codes.
The TSP Client module writes a script that interacts with
the Grid service that runs the parallel TSP program on the
cluster. The TSP program finds a circuit of the cities with
the shortest total distance and returns that circuit. Then,
as in the Google™ Search example, the JXPL interpreter
executes the script and returns an XML result. This is
converted to HTML according to the style sheet, saved,
and then displayed.

Figure 6 shows the results from this example. The
style sheet allows the circuit to be displayed in an elegant
HTML format. Note that the arrows between the cities

are actually hyperlinks that will return a web page from
MapsOnUs.com with step-by-step directions between the
cities.

4. Evolving Functionality

There are two features of the GUI that enable the

functionality to grow and evolve into more complex tasks.
First, the GUI itself allows for a workflow to be enclosed
into a single module, thus creating an abstraction.
Second, the generic client can be used not only to run
different applications but to create new applications.

4.1 Creating a new abstraction

One can see from the Google™ Search and TSP

examples that it is possible for the palette to get
congested. The GUI enables users to take a section of a
workflow and turn it into a new single module. In Figure
7, we have extracted the JXPL Interpreter, XSL, Tmp
File, and HTML Display modules from the previous
examples to create a new module containing these
components. Figure 8 shows the Google™ Search
workflow that is now much cleaner using this new
module. Furthermore, this same module can be reused.

4.2 Creating a new application

Figures 9-12 demonstrate how the GUI can be used to

create and use a new Grid application. First we needed to
create a Generic Client module. This module interacts
directly with the Generic Grid Service. The client can be
controlled by the parameters passed to it, which are the
URL of the Grid service, options, command, and data.
The command is the name of the application on the
remote machine. The data will be written to the service
using the write() or fileWrite() methods of the service.
The options will modify the behavior of the client. For
example, a “-w” option indicates that the client should use
the fileWrite() method instead of the write() method so
that the data will be saved to a file on the remote machine.

In order to deploy a new application, the user will want
to transfer a program to the remote machine and possibly
compile it. These two operations have been created using
the Generic Client, as shown in Figure 9 and Figure 10.
For the file transfer, the parameters given are such that the
client will cause the data, which is a local file name, to be
read and written to the remote machine. A new module
called File Transfer Client is created with these
components, except that the local and remote file names
are the input and output. Another module is created that
can compile a program once it has been transferred.
Figure 10 shows a new module that uses the Java™
compiler. This time, the command given to the Generic
Client is a string concatenation of the command “javac”

and the file name, but there is no data. The source
program name is the input port of the new module, and
the output is the file name of the compiled version.

Another module that we need before we can create and
use new applications is a Registration Client and its
corresponding Registration Service. The Registration
Service is restricted to authorized users. The registration
process involves adding a program to the configuration
file of the Generic Service, only if that program is not
already in the configuration file. The registration process
will also check to see if the program is already in the path
of execution. If the program is not in the path, then the
registration process will move the program to a location
where it will be in the path. The input port to the
Registration Client is the file name of the executable
program, and the output ports are the URL of the Generic
Service, the options, and the command. These three
output ports are the first three required input ports of the
Generic Service.

Figure 11 shows a new module that will create a new
application. The input to the module is a local program
file name. The new module will transfer the file to the
remote machine, compile the program, and register it.
Figure 12 shows how we can create a new module to
execute the new application once it has been registered.
The three outputs from the Create New Application
module can be given to the Generic Client so that it will
be able to run the new application. These outputs then
can be used as part of a new module created specifically
to run this new application. The input to the new
application module is the data, and the result of the
application is the output.

5. Conclusions

This paper introduces the UNCW GUI and the JXPL

scripting language. These components can make Grid
service interaction easier without taking away from Grid
functionality. We have shown two examples of using the
GUI and JXPL to perform a refined Google™ search and
to solve a traveling salesman problem in a Grid
environment. In addition, we have exhibited a way to use
the GUI to execute user applications remotely, and the
level of abstraction that the GUI provides.

The GUI that we have developed will be tested on the
North Carolina Grid. The NC Grid is being built using
computing resources from universities in North Carolina.
We will be deploying this GUI on a few of these
campuses in the next year, and the GUI will be used by
scientists doing research in Chemistry, Bioinformatics,
and Computer Science. Even though it is a newly created
interface, we are confident that the availability of this
GUI will facilitate the use of the Grid by these
researchers.

6. References

[1] Zhang L. Chung J., Zhou Q., “Developing Grid computing
applications, Part1, Retrieved from http://www-
106.ibm.com/developerworks/grid/library/gr-grid1, November
2003.

[2] Foster, C. Kesselman, J.M. Nick, S. Tuecke, Physiology of
the Grid, Retrieved from
http://www.globus.org/research.papers/ogsa.pdf, November
2003.

[3] Borja Sotomayor, The Globus Toolkit 3 Programmer’s
Tutorial, Retrieved from http://www.casa-sotomayor.net/gt3-
tutorial/, November 2003.

[4] Foster, What is a Grid? A Three Point Checklist, Retrieved
from http://www-
fp.mcs.anl.gov/~foster/Articles/WhatIsTheGrid.pdf, November
2003.

[5] Edward Lee, Ptolemy, http://ptolemy.eecs.berkeley.edu/ ,
June 2003.

Figure 1: Workflow for the Google™ Search example

Figure 2: JXPL script that multiplies 2 numbers

Figure 3: Sample of the results of the Google™ Search example

String readErr() – reads from the process’ error stream and returns it as a String.
void readConf() – reads the configuration file that contains the list of executable applications.
boolean start(String args) – creates and begins executing the process.
void write(byte [] output) – writes a byte array to the input stream of the process.
String read() – reads a byte array off of the process’ output stream.
void stop() – terminates the process and the connection to the service.
String setOutFile(String filename) – creates a file on the service side machine.
void fileWrite(byte [] output) – writes a byte array to the file created by the setOutFile() method.
void outputToFile() – redirects a process’ output stream to a file created by the setOutFile() method.

Figure 4: Generic Grid Service API

Figure 5: Workflow for the traveling salesman problem example

Figure 6: Results of the traveling salesman example

Figure 7: Creating an abstraction of the JXPL Interpreter, XSL, and HTML Display operations

Figure 8: The Google™ search example with the new module that contains the JXPL to HTML Display

Figure 9: Creation of a File Transfer Client Module

Figure 10: Creation of a Java Compiler Module

Figure 11: Adding the Register Client component

Figure 12: Final workflow to transfer, compile, and execute a Java™ application

	01: 316
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	02: 317
	03: 318
	04: 319
	05: 320
	06: 321
	07: 322
	08: 323
	09: 324

