
Using Patterns to Teach Parallel Computing
Clayton Ferner

University of North Carolina
Wilmington

601 S. College Rd.
Wilmington, NC 28403, USA

cferner@uncw.edu

Barry Wilkinson
University of North Carolina

Charlotte
9201 University City Blvd.
Charlotte, NC 28223 USA

abw@uncc.edu

Barbara Heath
East Main Evaluation & Consulting,

LLC
P.O. Box 12343

Wilmington, NC 28405 USA
bheath@emeconline.com

Abstract—In this paper, we describe the results of teaching a
parallel programming course using a pattern programming
approach in a course taught across the State of North Carolina
on a televideo network in Fall 2013. Five universities
participated in this study. The course begins with a higher-
level tool called the Seeds framework that creates and executes
high-level message passing patterns such as a workpool
without writing low level MPI code. To avoid going directly to
MPI next, we used another tool (Paraguin compiler) which
uses compiler directives to create MPI code for patterns. Once
students understand the pattern programming approach we
then present low level MPI routines and their more complex
parameters but now with the knowledge of parallel patterns.
An independent professional evaluator is employed to deploy
survey instruments and produce an analysis of the results. The
lessons we learned from this data collected in Fall 2013 are: 1)
Teaching parallel computing in the context of patterns has a
positive impact on student learning; 2) Teaching the lower
level tools first would be beneficial; 3) The improvements made
to the Paraguin compiler directives significantly improved the
students confidence in using the tool; and 4) The lower level
tools can still be taught in the context of patterns.

Keywords- pattern programming; compiler directives;
parallel computing; distributed computing.

I. INTRODUCTION
Parallel computing and programming, once regarded as
specialized area, is now becoming central part of the
undergraduate computer science curriculum especially with
the advent of multicore processors. Computer science
students should understand how to program multicore and
distributed-memory computer systems now that these
systems are widespread. An approach to parallel
programming that is becoming recognized as a way to create
parallel programs that are scalable and maintainable in a
professional environment involves using parallel design
patterns. This concept comes directly from using design
patterns in software engineering, and tutorials now appear in
major scientific computing conferences [8]. Bringing these
concepts into the undergraduate curriculum for parallel
programming began recently, with work by the authors [2],
[11], and others [1].

Pattern programming involves writing programs that
conform to standard and well-known parallel computational
patterns. These patterns can be high level application
patterns such as workpool, pipeline or stencil patterns or

lower level patterns such as broadcast and scatter. Higher
level patterns are in fact constructed from lower level
patterns. Our interest is mostly in higher level patterns and
in producing and using automated ways of creating
executable code without writing any code in low level MPI
or OpenMP APIs.

In Fall 2012, we first taught a course on parallel
computing using two tools that allowed the students to
create parallel program expressed as patterns. This course
was taught jointly at the University of North Carolina
Charlotte and the University of North Carolina Wilmington.
It was delivered to the two campuses using the North
Carolina Research and Education televideo network
(NCREN) connecting universities across North Carolina.
Authors Ferner and Wilkinson co-taught the course from
their respective universities. The course was taught a second
time in Fall 2013, again using NCREN. The university
participating in Fall 2013 were: University of North
Carolina Wilmington, University of North Carolina
Charlotte, North Carolina A&T University (a minority
serving institution), East Carolina University, and
University of North Carolina Greensboro.

 In this paper, we will report on how students find these
automated ways of created pattern-based parallel programs
compared to creating more traditional MPI or OpenMP
programs. The two high-level tools that we used were the
Seeds Framework, developed at UNC-Charlotte, and the
Paraguin compiler, developed at UNC-Wilmington. We also
taught MPI and OpenMP in the traditional fashion with
which we could ask the students to compare and contrast the
approaches.

An external evaluator conducted three surveys during the
semester and analyzed the data. Teaching effectiveness data
was collected by co-author Heath completely independent of
the two instructors Ferner and Wilkinson and was not
released to the instructors until after the course had finished
and graded. Proper Institutional Review Board (IRB)
protocols were followed throughout including using consent
forms and maintaining complete confidentiality of individual
students. Student participation was completely voluntary.
The class size was 69 students in Fall 2013 (compared to 58
students in Fall 2012). The class was a mix of undergraduate
and graduate students, all studying computer science, with
approximately half being undergraduate students. The

2014 IEEE 28th International Parallel & Distributed Processing Symposium Workshops

978-1-4799-4116-2/14 $31.00 © 2014 IEEE

DOI 10.1109/IPDPSW.2014.123

1106

prerequisites for the course are two semesters of
programming plus a course on data structures.

Co-author Heath gathered the same teaching
effectiveness data on both Fall 2012 and Fall 2013 offerings.
The results from the analysis of the data collected from the
Fall 2012 course were published in [2]. Using these results,
we made modifications to our materials. What we found
from the Fall 2012 course is that: 1) students prefer the
flexibility and control the lower level tools provide; and 2)
the Paraguin compiler directives were difficult to understand
and use. Based upon those conclusions, the Paraguin
compiler directives were redesigned to make them more
intuitive. Furthermore, we refined and rearranged the
presentation of our materials to have a more pattern-based
approach. In this paper, we present the results of the finding
from the Fall 2013 course, compare those results with the
results from Fall 2012, and present the lessons we learned
from teaching using our tools and new materials.

The rest of this paper is organized as follows. Existing
work is briefly reviewed in Section II. In Section III, we
describe our pattern programming approach. In Section IV,
we describe the survey instruments. In Section V, we present
and discuss the results. Section I describes future work.
Finally, Section II concludes.

II. EXISTING WORK
Mattson et al. [6] wrote a book on design patterns in parallel
programming, published in 2004. Subsequently a number of
research projects explored parallel patterns. A pattern
programming language called OPL (Our Pattern Language)
was developed by Keutzer et al.[5] Intel and Microsoft have
interest in pattern programming. McCool et al. [7] wrote a
text published in 2012 on parallel pattern using Intel tools
notably Threading Building Blocks (TBB), Intel Cilk plus,
Intel Array Building Blocks (ArBB),and presented a tutorial
at Supercomputing in 2013 [8].

Using parallel patterns in undergraduate parallel
programming classes is a recent development. A 2007-2011
UNC-Charlotte PhD project [13] exploring pattern
programming directly led to using pattern programming in
the classroom at UNC-Charlotte [12]. Funding was obtained
from National Science Foundation in 2012 to develop
educational materials based upon the pattern programming
approach. This collaborative NSF project brought together
two complementary approaches: the high-level Seeds pattern
programming framework developed at UNC-Charlotte
[13][14], and a compiler directive approach (Paraguin
compiler) developed at UNC-Wilmington [3][4], both as
research efforts. We combined the approaches with an
integrated pattern programming based course presented here.

Pattern programming is being promoted in the classroom
elsewhere. Adams et al. describe patternlets, “fully
operational but minimalist programs that illustrate the
pattern’s use and behavior in a given parallel platform.”
They also introduce exemplars- “representative and
compelling applied problems together with implementations
in different parallel technologies” and combine exemplars
with patterns.[1]

In the area of compiler directives, Renault and Parrot [9]
created a pre-processor that can automatically generate MPI
derived datatypes from the C data types. This pre-processor
does not generate the code to parallelize an algorithm but
rather assists the programmer with creating the complex MPI
datatypes needed for the transmission of user-defined
datatypes.

The closest work to our research work on compiler
directives is the llCoMP compiler for the llc language [10].
The llc language allows the programmer to specify parallel
constructs for both MPI and OpenMP using llc and OpenMP
pragma statements. It appears that the use of patterns in the
llc compiler is specific to compiler optimizations designed to
improve the efficiency of the communication rather than user
defined patterns related to the algorithm structure. Our
compiler also has directives to specify parallel constructs to
use both MPI and OpenMP; however, the constructs are
specifically intended to describe the pattern to which the
algorithm adheres.

Although others are using patterns to teach parallel
computing, we are using tools that automatically generate
code based upon a pattern.

III. HEIRARCHICAL APPROACH TO PATTERN
PROGRAMMING

Our approach begins with high level message passing
patterns, implemented through the Seeds framework. Then,
we use the Paraguin compiler approach to implement the
message passing patterns, still hiding the underlying
implementation, and finally we delve into low level MPI.
Figure 1 shows the first pattern we introduce, the workpool
pattern, and the kernel of the workpool pattern algorithm
implemented using the Seeds framework. The algorithm is
the Monte Carlo method for approximating �. The Seeds
framework is Java-based that will self-deploy on multicore
or distributed computing platforms and is described fully
elsewhere [11],[12],[13],[14]. Several patterns are pre-
implemented and we start with the workpool pattern.
Students install Seeds on their own computer to do the
assignment. The key aspect is that the programmer does not
need to write the code to create the selected pattern or the
message passing for the selected pattern. In the workpool
pattern (Figure 1), there are three principal methods that
need to be implemented, a method that specifies the data to
be sent from the master to the slaves (DuffuseData()), the
method that specifies the computation that the slaves do
(Compute()) and the method that specifies what data is
collected by the master at the end (GatherData()).

In the compiler directive approach, students use pragma
statements to guide the Paraguin compiler for how to create
the message-passing code to implement the desired pattern.
The Paraguin compiler directives were designed to model
OpenMP yet create MPI code suitable for execution on a
distributed-memory system. Figure 2 demonstrates how the
students would implement the scatter/gather pattern using the
Paraguin compiler as well as using MPI. The scatter/gather
pattern is a low-level pattern, so we discuss that pattern early

1107

in the semester. The scatter/gather pattern is one where the
master process distributes the input data to the workers. Each
worker computes partial results from the input, and then the
partial results are gathered back to the master. Because the
individual workers compute their partial results completely

independently, this is a fairly easy pattern to understand for
the students as well as it can produce speedup even on a
distributed-memory system.

Figure 3 shows the stencil pattern using the Paraguin
compiler. The stencil pattern is a pattern where neighboring
processors communicate data after each iteration. Heat
distribution is an algorithm that fits this pattern, and we ask
the students to model the heat distribution throughout a room
from a fireplace.

To use the Paraguin stencil pattern, the students must
declare a 3-dimensional array (the 1st dimension is for the
new and old values computed at each iteration) as well as fill
it with initial values. The students must also provide a
function that will compute the new values based upon the
values of the last iteration. All of the remaining code to
implement the stencil pattern in a message-passing
environment is created for them. The code to scatter and
gather the input and partial results and the code to have each
processor communicate its computed values with its
neighbors is all created for them.

Figure 2: Scatter/Gather Pattern

(a) Scatter andgather patterns

(c) MPI scatter/gather pattern code

MPI_Scatter(A,N,MPI_DOUBLE,A,
 N,MPI_DOUBLE,0,MPI_COMM_WORLD);
MPI_Scatter(B,N,MPI_DOUBLE,B,
 N,MPI_DOUBLE,0,MPI_COMM_WORLD);
 ...
MPI_Gather(C,N,MPI_DOUBLE,C,
 N,MPI_DOUBLE,0,MPI_COMM_WORLD);

(b) Paraguinscatter/gather pattern code

#pragma paraguinbegin_parallel
#pragma paraguin scatter A B
 ...
#pragma paraguin gather C
#pragma paraguinend_parallel

Slaves

Master
(With a task queue)

(a) Workpool pattern

(b) Workpool pattern implemented in Seeds Framework

public Data DiffuseData (int segment) {
 DataMap<String, Object> d=
 new DataMap<String, Object>();
 d.put("seed", R.nextLong());
 // returns a random seed for each job unit
 return d;
}

public Data Compute (Data data) {
 DataMap<String, Object> input =
 (DataMap<String,Object>)data;
 DataMap<String, Object> output = new
 DataMap<String, Object>();
 // get random seed
 Long seed = (Long) input.get("seed");
 Random r = new Random();
 r.setSeed(seed);
 Long inside = 0L;
 for (inti = 0; i<DoubleDataSize ; i++) {
 double x = r.nextDouble();
 double y = r.nextDouble();
 doubledist = x * x + y * y;
 if (dist<= 1.0)
 ++inside;
 }
 // to return to GatherData()
 output.put("inside", inside);
 return output;
}

public void GatherData (int segment, Data dat)
{
 DataMap<String,Object> out =
 (DataMap<String,Object>) dat;
 Long inside = (Long) out.get("inside");
 // aggregate answer from all worker nodes.
 total += inside;
}

Figure 1: Workpool Pattern

1108

Figure 4 shows the steps that are inserted into the
resulting code to implement the stencil pattern. The code
that is inserted is MPI code.

The results of the study from Fall 2012 [2] showed that
the students found the Paraguin compiler difficult to use. In
the year between Fall 2012 and Fall 2013, the compiler
directives were redone to make them simpler and more
intuitive, and better documentation was provided.
Furthermore, the stencil pattern was added to the Paraguin
compiler during this year.

After the students complete the assignment using the
Seeds framework and the assignment using the Paraguin
compiler, we have them use MPI to implement the
scatter/gather pattern and the workpool pattern. We do not
have the students implement the stencil pattern using MPI
because of the level of difficulty; however, the students can
see the implementation. One advantage of using the Paraguin
compiler is that it is a source-to-source compiler. The user
may inspect as well as modify and re-compile the resulting
MPI code it produces.

IV. SURVEY INSTRUMENTS
During both offerings of our course in Fall 2012 and Fall
2013, students were invited to provide feedback that would
assist with the development of the future course offerings.

Feedback was collected by the external evaluator via three
surveys: a pre-, mid-, and post-course survey. Students who
provided consent and completed each of the three surveys
were entered in a drawing for one of eight $25 Amazon gift
cards. For each survey in Fall 2012, 58 invitations were sent
to students at both campuses. The response rates for the three
surveys were: 36%, 29%, and 28%, respectively. In Fall
2013, 69 invitations were sent to students at all campuses.
The response rates for the three surveys were: 55%, 32%,
and 45%, respectively.

The purpose of the pre- and post-semester surveys was to
assess the degree to which the students learned the material
taught during this offering. A set of five pre-course items
were developed for this purpose. The items were presented
with a six-point Likert scale from “strongly disagree” (1)
through “strongly agree” (6). Table I shows the questions
that were on these surveys.

The questions from the mid-semester survey included
some open-ended questions related to the assignments. Table
II provides the questions that were asked. In addition to these
questions, students were also asked to rate the relative
difficulty of using Pattern Programming, MPI, and the
Paraguin compiler directives using a six-point Likert scale
from “very difficult” (1) through “very easy” (6). The
purpose of this mid-semester survey was to compare and
contrast our new approaches to parallel programming with
just using MPI. The goal of this survey was to help us revise
our materials.

Figure 3: Stencil Pattern

(a) Stencil Pattern

(b) Paraguin stencil pattern code

double f (double A[][M], int i, int j) {...}

int main (int argc, char *argv[]) {
 int n, m, max_iters;
 double A[2][N][M];
 ...
 #pragma paraguin begin_parallel
 n = N;
 m = M;
 max_iters = TOTAL_TIME;
 #pragma paraguin stencil A n m max_iters f
 #pragma paraguin end_parallel

Scatter/
Gather

Figure 4: Implementation of the Stencil Pattern

The Stencil Pragma is Replaced with Code to do:
1) The 3-dimensional array given as an argument to

the stencil pragma is broadcast to all available
processors.

2) current is set to zero and next is set to one.
3) A loop is created to iterate max_iteration number of

times. Within that loop, code is inserted to perform
the following steps:
a. Each processor (except the last one) will send

its last row to the processor with rank one more
than its own rank.

b. Each processor (except the first one) will
receive the last row from the processor with
rank one less than its own rank.

c. Each processor (except the first one) will send
its first row to the processor with rank one less
than its own rank.

d. Each processor (except the last one) will
receive the first row from the processor with
rank one more than its own rank.

e. Each processor will iterate through the values
of the rows for which it is responsible and use
the function provided compute the next value.

f. current and next toggle
4) The data is gathered back to the root processor

(rank 0).

1109

TABLE I. PRE- AND POST-SEMESTER SURVEY QUESTIONS

Item

I am familiar with the topic of parallel patterns for structured
parallel programming.
I am able to use the pattern programming framework to create a
parallel implementation of an algorithm.
I am able to use the Paraguin compiler (with compiler directives)
to create a parallel implementation of an algorithm.
I am able to use MPI to create a parallel implementation of an
algorithm.
I am able to use OpenMP to create a parallel implementation of
an algorithm.

TABLE II. OPEN-ENDED QUESTIONS COMPARING THE METHODS USED
FOR PARALLEL PROGRAMMING.

Item

Describe the benefits and drawbacks between the following
methods: Pattern Programming (Assignment 1) and MPI
(Assignment 2).
Describe the benefits and drawbacks between the following
methods: Pattern Programming (Assignment 1) and Paraguin
Compiler Directives (Assignment 3).
Describe the benefits and drawbacks between the following
methods: MPI (Assignment 2) and Paraguin Compiler
Directives (Assignment 3).

V. RESULTS
At the outset of the course for both offerings, students
responded in the “disagree” to “mildly disagree” range for all
items presented indicating that students were not familiar
with the topics or methods. However, by the conclusion of
the course, students responded in the “mildly agree” to
“agree” range to the same survey items, indicating that they
learned the topics and how to use the methods (Table III).
The number of participants (N) is smaller here because not

all students answered all questions on the survey and the
external evaluator matched the responses of the students
between the two surveys. In other words, the number of
participants shown in Table III is the number of participants
that answered BOTH sets of questions.

The students indicated that they mostly did not feel able
to use the tools to implement algorithms in parallel in the
beginning of the semester. By the end of the semester, the
students were mostly confident in their ability to implement
parallel algorithms. Naturally, this is expected. What was not
expected was the result from Fall 2012 indicating the
students had greater confidence in using the lower level
parallel tools (MPI and OpenMP) than in using our new
approaches (patterns and the Paraguin compiler). Based
upon that information, we improved our materials on the
Seeds Framework as well as the Paraguin compiler
directives. Most notably, the Paraguin compiler directives
were re-done so as to make them more intuitive.

There was an improvement in the percentage gain of the
students’ ability to use our tools from the Fall 2012 offering
to the Fall 2013 offering. We attribute this to the
improvements made to the materials throughout the 2013
calendar year. These improvements seem to have had a
positive impact on student learning, particularly on the
students’ ability to use the Paraguin compiler which
increased a full point from “mildly agree” to “agree” with a
lower standard deviation.

Table IV rates the relative difficulty between Seeds,
Paraguin, and MPI using a six-point Likert scale from “very
difficult” (1) through “very easy” (6). With the
improvements made to the Paraguin compiler directives, the
students found the compiler much easier to use. On the other
hand, students found MPI to be more difficult. The reason
for this is shown in the following tables and discussed next.

The students were asked to provide open-ended
comments comparing and contrasting the Seeds tool (Pattern
Programming) with MPI and the compiler directive approach
with MPI. Tables V and VI give some of the answers by
students that shed some light on the difficulty students had

TABLE III. PRE- AND POST-SURVEY RESULTS OF FAMILIARITY WITH TOPICS AND METHODS

Item

Fall 2012 Fall 2013
Pre Post Pre Post

Mean (sd)
N=16

Mean (sd)
N=16

Mean (sd)
N=21

Mean
(sd)

N=21
I am familiar with the topic of parallel patterns for structured parallel
programming.

2.56
(1.59)

4.44
(1.09)

3.14
(1.42)

4.95
(1.07)

I am able to use the pattern programming framework to create a parallel
implementation of an algorithm.

2.25
(1.61)

4.25
(0.86)

3.00
(1.52)

5.05
(0.50)

I am able to use the Paraguin compiler (with compiler directives) to
create a parallel implementation of an algorithm.

1.69
(0.95)

4.13
(1.15)

2.43
(1.50)

5.14
(0.79)

I am able to use MPI to create a parallel implementation of an
algorithm.

2.31
(1.40)

4.88
(0.81)

2.14
(1.24)

4.95
(0.74)

I am able to use OpenMP to create a parallel implementation of an
algorithm.

2.19
(1.17)

5.06
(1.24)

2.33
(1.46)

5.19
(0.75)

1110

TABLE IV. RELATIVE DIFFICULTY OF THE THREE METHODS OF
PARALLEL COMPUTING

 Fall 2012 Fall 2013
Mean (sd) Mean (sd)

Pattern Programming 3.63 (0.89) 3.95 (1.19)

MPI 3.25 (1.13) 2.05 (0.94)

Paraguin Compiler Directives 2.56 (1.26) 3.37 (1.26)

with MPI. In particular, the 2nd comment from Table V and
the 3rd comment from Table VI indicate that the students
would have benefited from learning MPI before using our
tools, although not all agree (see comment 6 from Table VI).
First, students would have a better understanding of what the
tools are doing for them and how the patterns are actually
implemented. Second, MPI seemed significantly harder after
covering the more abstract tools. Third, the Paraguin
compiler requires some knowledge of both OpenMP and
MPI. Teaching the Paraguin compiler directives first
required us to introduce concepts without the full context in
which they would normally be taught.

It is interesting that several students indicate the better
control over implementation provided by MPI was desirable.
Computer science students seem to prefer control as well as
the concreteness of the implementation of their algorithms.
We observed similar comment from students in the Fall 2012
offering.

The lessons we learned from this data collected in Fall
2013 are:
1) Teaching parallel computing in the context of patterns

has a positive impact on student learning.
2) Teaching the lower level tools first would be beneficial

because:
a. MPI is more difficult to use and learn
b. Computer science students understand higher level

tools better by first seeing their implementation
c. Teaching the Paraguin compiler directives requires

some knowledge of OpenMP and MPI
3) The improvements made to the Paraguin compiler

directives significantly improved the students
confidence in using the tool

4) The lower level tools can still be taught in the context of
patterns

I. FUTURE WORK
In our first programming assignment using the Seed pattern
programming framework, students install the framework on
their own computer to do the assignment. Students report
they like this approach. The subsequent assignments
involving Paraguin, MPI, and OpenMP were done on
remotely accessed clusters. Using one’s own computer
would have a number of advantages. Programs can be
quickly compiled and tested. It reduces issues such as poor
connections to the cluster and faulty user programs running
on the cluster that are affecting response time. With this in
mind, we have changed our MPI assignments for Spring
2014 at UNC – Charlotte so that students first test their

TABLE V. OPEN-ENDED STUDENT COMMENTS COMPARING
PATTERNED PROGRAMMING WITH MPI

“Benefits: MPI provided a deeper understanding of low-level
code and the utilization of such. Drawbacks: Assignment 3 left
me feeling the most lost of any assignment yet this semester.
Lots of banging my head against my desk, so to speak.”
“Pattern programming was somewhat helpful in seeing how
certain patterns worked. However, it would have been easier
for me to start with MPI first to get a lower level knowledge of
parallel programming.”
“Pattern programming allows for a higher level of abstraction,
which in turn allows the programmer to focus on the
computation rather than passing of information between the
processes. MPI uses a low level of abstraction. While at
times more challenging, it allows the programmer more
control over the processes, communication, and resource
allocation.”
“Pattern programming is simpler to code and understand--at
first glance. Simple logic dictates the algorithm and pattern.
However, compared to MPI, it is not as close to the parallel
concept of programming. Hence, it is more expensive and
creating a data structure (hash) require additional expense and
implementations. MPI, although complex, distributes and
executes in various processors assigned. More control on
parallel algorithm implementation and execution.”
“Patterns programming is definitely easier. I think knowing
how MPI works is very useful.”
“Pattern is very easy to use and MPI seems a little awful to use
it, but MPI give me a better understanding about how these
patterns are implemented step by step and I think it's very
useful.”
“MPI is more difficult to use.”
“Seeds is a higher level programming construct, therefore
easier to implement. MPI is more powerful because it can be
implemented however the user desires.”

programs on their own computer before uploading and
testing on a cluster. This requires students to install an
implementation of MPI (usually OpenMPI or MPICH). We
currently accept any approach including direct installation
within the native OS or installing a VM such as VirtualBox
together with Linux, or even Cygwin, which comes with
OpenMPI libraries. Most students in our classes use a
Windows personal computer. A similar approach can be
done with OpenMP.

We will be teaching our collaborative course in Fall 2014
on NCREN. What we plan to do differently is introduce the
lower level tools (MPI and OpenMP) before introducing the
higher-level tools (Seeds and Paraguin). Moreover, we plan
to reorganize the materials to be more pattern-centric than
tool-centric. In the two previous NCREN offerings of the
course, we started with one tool and discussed specifics,
patterns and examples of that tool before moving on to the
next. In the next offering, we plan to start with one pattern,
patterns, or classes of patterns, then introduce the different
tools, specifics, and examples of implementing the patterns
using the tools. We will start with the lower-level tools for a
given pattern or class of patterns before moving on to the
higher-level tools. This will give the computer science
students the desired feel of “control” as well as give them an

1111

TABLE VI. OPEN-ENDED STUDENT COMMENTS COMPARING COMPILER
DIRECTIVES USING THE PARAGUIN COMPILER WITH MPI

“Paraguin Compiler Directives could generate MPI code, it's
easier to apply than MPI; however, not as flexible and powerful
as MPI. It can only generates simple MPI routine.”
“Paraguin removes the difficulty of message passing, and
incorporates some useful design patterns. MPI allows complete
control, but it is up to the programmer to implement the needed
patterns for computation.”
“Paraguin should be covered after MPI. The documentation
provided for MPI used variables with no explanation as to where
the variables came from. I'm interested in doing further MPI
work, but it appears than I'm going to have to research it myself
because the course material was extremely vague and confusing
to follow. Doing a better job organizing the MPI material to
grasp the concepts will be more beneficial to understand what
the Paraguin compiler is actually doing. Endstate, Paraguin is
much more clear, concise and intuitive than MPI.”
“Paraguin is easier to use than MPI and offers built in patterns.”
“Once again, Paraguin is easier to utilize. I still don't get MPI.”
“I've gone back and forth on this, but I think I enjoyed doing
Paraguin before MPI. It introduced the concepts behind MPI
before they were forced on us in assignment 3. Still though,
assignment 3 was difficult. Assignment 2 was not. I feel like
both were helpful in terms of gaining knowledge.”
“Paraguin compiler directives call MPI routines automatically
however using MPI directly lets the developer be more explicit.”

appreciation for all that the higher level tools are doing on
their behalf. It will also allow us to demonstrate how to use
the higher level tools in a way that gives the full control MPI
provides.

We are also continuing to develop our tools. We have
plans to implement additional patterns such as: pipeline,
divide and conquer, and all-to-all.

II. CONCLUSIONS
In this paper, we described the results of teaching a parallel
programming course using a pattern programming approach
in a course taught across the State of North Carolina on a
televideo network in Fall 2013. Five universities participated
in this study. The course begins with a higher-level tool
called the Seeds framework that creates and executes high-
level message passing patterns such as a workpool without
writing low level MPI code. To avoid going directly to MPI
next, we used another tool (Paraguin compiler) which uses
compiler directives to create MPI code for patterns. Once
students understand the pattern programming approach we
then present low level MPI routines and their more complex
parameters but now with the knowledge of parallel patterns.
An independent professional evaluator is employed to deploy
survey instruments and produce an analysis of the results.

In Fall 2012, students had indicated that they found the
lower level tools easier to use than the higher level tools.
With the modification made over the 2012-2013 academic
year reported in this paper, students in the Fall 2013 course
indicated the opposite. The students found the tools easier to
use that the low-level APIs, such as MPI. Furthermore, the
students understood how to implement an algorithm using

the pattern that fits it. Many of our students felt MPI was
very difficult and some expressed to us verbally a sincere
disdain for MPI. However intellectual it might be to do a
top-down approach, computer science students learn this
material better using a bottom-up approach. It was
interesting to note that several students preferred the
increased control provided by the lower level tools. Still,
introducing the material, whether it be first with the lower-
level tools or the higher-level tools, by presenting them in
the context of implementing a pattern improves student
learning. Regardless of the tool being used, implementing an
algorithm by first identifying its pattern and then following
known implementations for that pattern have a positive
impact on students’ ability to create parallel programs.

ACKNOWLEDGMENT
This material is based upon work supported by the

National Science Foundation under the collaborative grant
#1141005/1141006. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
National Science Foundation.

REFERENCES
[1] Adams, J., Brown, R., and Shoop E. 2013. Patterns and Exemplars:

Compelling Strategies for Teaching Parallel and Distributed
Computing to CS Undergraduates,Third NSF/TCPP Workshop on
Parallel and Distributed Computing Education (EduPar-13), held in
conjunction with the 27th IEEE International Parallel & Distributed
Procession Symposium (IPDPS 2013), Boston, MA, May 20, 2013.

[2] Ferner, C., Wilkinson, B., and Heath, B. 2013. Toward using higher-
level abstractions to teach Parallel Computing, Third NSF/TCPP
Workshop on Parallel and Distributed Computing Education
(EduPar-13), Boston, MA, May 20, 2013.

[3] Ferner, C.S. 2006. Revisiting communication code generation
algorithms for message-passing systems, International Journal of
Parallel, Emergent and Distributed Systems (JPEDS) 21(5), 323-344.

[4] Ferner, C. S. 2002. The Paraguin compiler---Message-passing code
generation using SUIF, in Proceedings of the IEEE SoutheastCon
2002, Columbia, SC, 1-6.

[5] Keutzer, K., and Mattson, T. Our Pattern Language (OPL): A Design
Pattern Language for Engineering (Parallel) Software.
http://parlab.eecs.berkeley.edu/wiki/_media/patterns/paraplop_g1_1.p
df.

[6] Mattson, T. G., Sanders, B. A., and Massingill, B. L. 2004. Patterns
for Parallel Programming. Addison Wesley.

[7] McCool, M., Reinders, J., and Robison, A.2012. Structured Parallel
Programming: Patterns for Efficient Computation. Morgan
Kaufmann.

[8] McCool, M. D. , Reinders, J. R. , Robison, A., and Hebenstreit, M.
2013. Structured Parallel Programming with
Patterns,Supercomputing, SC 13 Technical Program Tutorial, Denver
CO, Nov 17, 2013.

[9] Renault, E., and Parrot, C. 2006. MPI Pre-processor: Generating MPI
Derived Datatypes from C Datatypes Automatically, in Proceedings
of the2006 International Conference on Parallel Processing
Workshops (ICPPW’06), Columbus, OH, August 14-18.

[10] Reyes, R., Dorta, A.J., Almeida, F., and Sande, F., 2009. Automatic
hybrid MPI+OpenMP code generation with llc, in Proceedings of
Recent Advances in Parallel Virtual Machine and Message Passing
Interface, 16th European PVM/MPI Users’ Group Meeting, Espoo,
Finland, September 7-10,.

1112

[11] Wilkinson, B., and Ferner, C. 2013. Workshop 31: Developing a
Hands-on Undergraduate Parallel Programming Course with Pattern
Programming,SIGCSE 2013, The 44th ACM Technical Symposium on
Computer Science Education, Denver, USA, March 9.

[12] Wilkinson, B., Villalobos, J., and Ferner, C. 2013. Pattern
Programming Approach for Teaching Parallel and Distributed
Computing.SIGCSE 2013 Technical Symposium on Computer
Science Education. Denver, Colorado, March 8.

[13] Villalobos, J. 2011. Running Parallel Applications on a
Heterogeneous Environment with Accessible Development Practices
and Automatic Scalability. PhD diss. University of North Carolina
Charlotte.

[14] Villalobos, J. Parallel Grid Application Framework. http://coit-
grid01.uncc.edu/seeds/.

1113

