Compilers, Parallel, Grid, and Cloud Computing

Dr. Clayton S. Ferner
Professor
Department of Computer Science
University of North Carolina Wilmington

Outline

- Compilers
- Parallel Computing
- Automatic Parallelizing Compilers
- Grid Computing
- Cloud Computing

Compilers

 Computers understand Machine Code (instructions in binary)

 Humans can understand Machine Code, but is it extremely difficult to work with

Compilers

- Humans understand natural languages (English, French, German, etc.)
- Computers do not understand natural languages
- Natural languages are too ambiguous to be useful to program a computer:
 - "Add a pinch of salt."
 - "I'll meet you at 4ish."
 - "How about a cup of coffee?"
 - "What's the matter?"

Sept. 23, 2010

Compilers as translators

 A high-level language is one that humans can easily work with but is unambiguous

```
int i;
for (i = 0; i < 10; i++)
    array[i] = 2*i;
if (a < b)
    a = b;
return a;</pre>
```

Compilers are essentially translators

Compilers as translators

A compiler is a software program that translate a high-level programming language to assembly language

movi

movl

%eax, -12(%rbp)

```
%esi, -8(%rbp)
                                                    -4(%rbp), %eax
                                            movl
if (a < b)
                                                    -8(%rbp), %eax
                                            cmpl
 a = b:
                                                  .L2
                                            jge
                                            .L2:
                                                    -8(%rbp), %eax
                                            movl
```

Compilers as translators

 Assembler is software that translates a program in assembly language to machine code

```
movl %esi, -8(%rbp)
movl -4(%rbp), %eax
cmpl -8(%rbp), %eax
jge .L2
.L2:
movl -8(%rbp), %eax
movl %eax, -12(%rbp)
```


Courses related to compiler technology

- CSC 360 Formal Languages and Computability
- CSC 434 Programming Languages
- CSC 457 Compiler Construction

- Parallel computing is the use of multiple processors to solve a single problem or to work on a single program
- The use of multiple processors to work in separate independent programs is not parallel computer

- Human beings are very good at parallel work:
 - Cutting grass
 - Building a house
- The more processors there are to work on a problem the faster it gets done
- Linear Speedup if you have a program that takes T seconds to complete on one processor, with N processors dividing up the work, it could take as little as T/N seconds

Parallel computing is a challenge

- Hindrances to real speedup synchronization and communication
- The processors must be programmed correctly to perform their share of the work and to synchronize and communication properly
- Writing a correct program to run on multiple processors is much more challenging that writing one to run on a single processor

- We've pushed the limits of processor speeds
 - Speed of light
 - Heat
- In order to increase the speed of computers they need to use multiple processors

- Many machines nowadays have dual- and quad-core processors
- Intel will soon be making machines with hundreds of processors
- What do we do with all those processors?

Courses Related to Parallel Computing

- CSC 337 Parallel Computing
- CSC 437/537 Parallel Computing II
- CSC 446/546 Grid Computing

- Wouldn't it be great if you could just write a program to run on one processor, then have a compiler figure out how to make it work correctly for multiple processors?
- Automatic Parallelizing Compilers attempt to do just that

Paraguin Compiler

- The Paraguin Compiler is a compiler I built using the SUIF Compiler from Stanford Univ.
 - (http://people.uncw.edu/cferner/Paraguin/)
- Automatic parallelizing compiler
- Produces MPI code for execution on Distributed Memory systems

- Grid Computing Using geographically distributed and interconnected computers together for computing and for resource sharing.
- Usually, grid computing involves teams working together on a common goal, sharing computing resources and possibly experimental equipment.
- The geographically distributed grid computing team and their resources is called a virtual organization.

Courses Related to Grid and Cloud Computing

- CSC 446/546 Grid Computing
 - Appalachian State University
 - East Carolina University
 - University of North Carolina, Ashville
 - University of North Carolina, Charlotte
 - University of North Carolina, Wilmington
 - Winston-Salem State University

Grid Computing Class this Semester

Cloud Computing

- Cloud computing provides computation, software, data access, and storage services that do not require end-user knowledge of the physical location and configuration of the system that delivers the services.*
- The basic idea is the "rent" computing resources instead of owning/maintaining
- Both models of computing have been compared to using a power grid

Sept. 23, 2010

^{*} Wikipedia. http://en.wikpedia.org/wii/Cloud_computing

Cloud Computing versus Grid Computing

- Grid Computing is about resource sharing - resources are owned by the participants
- Grid Computing creates the abstraction of a "virtual organization"
- Cloud computing resources are owned by some organization (Google, Amazon, Microsoft, etc.)
- Cloud computing uses virtualization

My Experience Using Amazon's EC2 Cloud

Need

- My children's school has an annual auction to raise money
- Auction software is not cheap, especially for non-profit organizations
- I developed a set up PHP pages and a corresponding mysql database to server their needs

Sept. 23, 2010

Auction 2011

Auction Forms

- Check In
- Clerk Auction Items
- Check Out
- Login
- Logout

Reports

- Guests
 - Guest List
- Auction Items
 - Live Auction
 - Silent Auction
 - All Items
- Final Reports
 - Bid Report
 - o Payment Report
 - Fund-A-Need Report
 - o Class Baskets Report
 - Faculty Adventures Report
 - Vacation Packages Report
- · Inventory Reports
 - Inventory Summary
 - Inventory Complete

Need (continued)

- Server is one of my laptops at home, open through firewall via port 80.
- During the actual auction an take the laptop and router to the auction and setup a Intranet.
- This spring, United Way of Roanoke paid me to use my software for their auction.
- I was nervous about the performance of my laptop with Internet connectivity through RoadRunner.
- What if my aging laptop fails?

- What if my aging laptop fails? It actually happened
- I had a backup of everything on my new laptop and switched servers.
- But that stopped working briefly when I couldn't boot the machine until I got through the fsck to check and repair the disk.
- How was I going to provide decent worry-free response during the auction in Roanoke, VA?

Solution

- Solution to rent a server on Amazon's EC2 cloud
- I setup up a Fedora Linux based machine
- I installed
 - Apache (html client)
 - Mysql database
- Copied over:
 - Database backup
 - PHP pages

Solution

- My new laptop had identical PHP pages and database to serve as a backup
- I setup an automatic backup every minute during the auction
- Backups were automatically copied to my laptop (which served as a mirror) within a minute
- All changes made during the auction were updated to my server within 2 minutes

Solution

- I had two machines with identical interface and identical (within two minutes) data
- Each machine was in a different location on different networks:
 - My laptop at home in Wilmington via RoadRunner (174.106.1.201)
 - Cloud machine someplace in Virginia (50.16.64.61)
- Any problems with one machine and I could have the auction volunteers switch servers by simply switch IP addresses.

Cost

- While I had the machine up to learn, install software, experiment, the cost was approximately \$2
- I had the server up for several days before, during, and after the auction (~ week).
- Total cost ~\$12

Conclusion

- Amazon's cloud gave me the resources to run this auction with:
 - Reliability
 - Low cost
 - Decent bandwidth
 - Full access (root) to the virtual machine
 - Peace of mind

Discussion

Questions?

http://people.uncw.edu/cferner/papers/CSC10011F.pdf