The ties that bind: social environment effects in marine benthic populations

Stephanie Kamel

Introduction

- Fine-scale genetic structure on ecologically relevant scales appears to characterize many marine populations, e.g.
 - Fishes (Selkoe et al. 2006; Bernardi et al. 2013)
 - Urchins (Ledoux et al. 2012)
 - Seagrasses (Kamel et al. 2012)
 - Limpets (Hoffman et al. 2012)

The social environment

- The density and genetic composition of groups of interacting conspecifics – the social environment – can influence performance, e.g.
 - Barnacles: settlement success (Gamfeldt et al. 2005)
 - Bryozoans: colonization success (Aguirre et al. 2012)
 - Seagrass: resistance to disturbance (Hughes & Stachowicz 2004)

The social environment

- Sessile or sedentary benthic communities
 - Intense competition for food and space
 - Potential impacts on the mating system, e.g.
 - Inbreeding depression

Hamilton’s Rule

Cooperative behaviors can evolve when:

\[rB > C \]

\(r \) = coefficient of relatedness
\(B \) = benefit of cooperation
\(C \) = cost of cooperation

The social environment

- Hummocking in the acorn barnacle, *Semibalanus balanoides* (Bertness et al. 1998)
 - Costs:
 - High mortality
 - Benefits:
 - Buffer from thermal stress
 - Increased reproductive output
 - Increased feeding efficiency
Hamilton’s Rule

Cooperative behaviors can evolve when:

\[rB > C \]

- \(r = \) proportion of genes in two individuals that are shared due to common ancestry
- \(r = 0 \) unrelated
- \(r = 0.25 \) share \(\frac{1}{4} \) of their gene, e.g., half-sibs
- \(r = 0.5 \) share \(\frac{1}{2} \) of their genes, e.g., parent-offspring, full-sibs
- \(r = 1 \) if two individuals share all their genes

Genetic structure in the sea

Paradigm: marine populations are open
Larval dispersal connects local populations over large distances

- Fine-scale genetic structure in species with limited dispersal
 - Allozymes
 - Microsatellites, SNPs
 - Biophysical models

Self-recruitment and kin structure in species with extensive dispersal potential

Research Questions

- **Families**: the genetic battleground
 - The evolution of parental care
 - Explaining offspring size variation

- **Neighbors**: relatedness and ecology
 - Relatedness as a predictor of population productivity

Relatedness is a dominant facet of the social environment

Social environment

- Life history
- Behaviour
- Reproductive isolation
- Community assembly
- Persistence

Gene flow and dispersal

Environmental change
The family unit

Sources of conflict

Cooperation... and conflict

♀ PARENT
SEXUAL CONFLICT OVER PARENTAL INVESTMENT

♂ PARENT
PARENT-OFFSPRING CONFLICT OVER PARENTAL INVESTMENT

PARENT-OFFSPRING CONFLICT OVER PARENTAL INVESTMENT

OFFSPRING 1

SIBLING CONFLICT OVER PARENTAL INVESTMENT

OFFSPRING 2

Magnitude of conflict

The magnitude of conflict depends upon:
(1) The opportunities for family members to interact
(2) The mating system
 — Specifically the degree of multiple mating (polyandry)

Arenas of conflict

Mating system

Multiple mating decreases relatedness among interacting individuals
Appears to be prevalent in marine organisms across a range of taxa

Paternity and parental care

Exclusive male parental care is rare
*In these cases, males care for their own genetic offspring
*≥ 70% paternity
Males of most mollusc species provide no post-zygotic investment in offspring.

Solenosteira macrospira exhibits exclusive male parental care.

Genetically characterize the mating system:
- Distribution of paternity among caring males
- Quantify the costs of care
 - Experimental manipulations of egg capsule load

On average, males sired only 24% of the offspring they were carrying.

Females mated with an average of 13 males within a season.
Paternity and parental care

- Males in this species have no choice but to care
 - The price to pay
 - Best of a bad situation
- *S. macrospira* presents an extreme example of the co-existence of high levels of female promiscuity, low paternity, and costly male care
 - Challenges classical theoretical predictions of the expected relationships between mating system, parental care, and relatedness

Sibling conflict

- Females package ≈ 200 eggs/capsule
- Hatchlings emerge after one month
 - Severe brood reduction
 - Up to 98% of embryos can be consumed by siblings

Sibling conflict

- The number of fathers within a capsule increases over the reproductive season
- Cannibalism and offspring size appear to vary as a function of polyandry

Offspring size variation

- Mating system variation alone can induce significant variation in offspring traits
- Offspring size has important life-history consequences
 - Affects survival, performance, and dispersal

Conclusions

Fine-scale genetic and kin structure
- Appears to characterize many marine species

Ecological effects of genetic diversity
- Can exert strong effects on performance

The social environment
How and how often are social environment effects expressed in the sea and how are anthropogenic influences affecting them?

Acknowledgements

- Richard Grosberg
- Jay Stachowicz
- Randall Hughes
- Paul Williams
- Nicholas Mrosovsky

The Mellon Foundation