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a b s t r a c t

Network ecologists investigate the structure, function, and evolution of ecological systems using network
models and analyses. For example, network techniques have been used to study community interactions
(i.e., food-webs, mutualisms), gene flow across landscapes, and the sociality of individuals in populations.
The work presented here uses a bibliographic and network approach to (1) document the rise of Network
Ecology, (2) identify the diversity of topics addressed in the field, and (3) map the structure of scientific
collaboration among contributing scientists. Our aim is to provide a broad overview of this emergent
field that highlights its diversity and to provide a foundation for future advances. To do this, we searched
the ISI Web of Science database for ecology publications between 1900 and 2012 using the search terms
for research areas of Environmental Sciences & Ecology and Evolutionary Biology and the topic ecology.
From these records we identified the Network Ecology publications using the topic terms network, graph
theory, and web, while controlling for the usage of misleading phrases. The resulting corpus entailed
29,513 publications between 1936 and 2012. We found that Network Ecology spans across more than
1500 sources with core ecological journals being among the top 20 most frequent outlets. We document
the rapid rise in Network Ecology publications per year reaching a magnitude of over 5% of the ecological
publications in 2012. Drawing topical information from the publication record content (titles, abstracts,
keywords) and collaboration information from author listing, our analysis highlights the diversity and
clustering of topics addressed within Network Ecology. The largest connected component of the topic
network contained 73% of the corpus, and exhibited strong clustering (clustering coefficient 0.93). The co-
authorship network revealed that while network ecologists are generally collaborative, the field is deeply

fragmented into topic and co-author cliques. The largest component of the co-author network comprised
46% of the authors and contained 149 distinct clusters. We suggest ways to build on the collaborative
spirit and reduce the field fragmentation so as to improve the development and spread of ideas. We
conclude that Network Ecology will likely continue to grow because the forces driving its increase are
likely to persist.

© 2014 Elsevier B.V. All rights reserved.
“I map, therefore I am” Katharine Harmon (2004)

“Networks are everywhere” Manuel Lima (2011)

“Ecology is networks. . . to understand ecosystems will be to

understand networks” Bernard Patten, quoted by Fritjof Capra
(1996)
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1. Introduction

Network concepts, tools, and techniques have a long history
of use in ecology, but in recent years their use appears to have
grown rapidly (Ings et al., 2009; Proulx et al., 2005). For example,
Summerhayes and Elton, 1923 mapped the food-chains and food-
cycles for biotic communities on Bear Island, creating prototype
food webs (Elton, 1927). Bernard C. Patten formally recognized the
importance of network models in ecology in his 1968 recruitment

lecture at the University of Georgia titled “The network variable in
ecology” (Patten and Fath, 2000: p. 178). More recently, scientists
have used network models to investigate communities of mutualis-
tic species (Bascompte et al., 2003; Bascompte and Jordano, 2007;
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uimarães et al., 2011), general properties of ecosystems (Higashi
nd Burns, 1991; Jørgensen et al., 2007; Ulanowicz, 1986), and the
ovement of genes and organisms across landscapes (Holland and
astings, 2008; Jacoby et al., 2012; Urban and Keitt, 2001). In this
aper, we investigate the broad use of network concepts, tools, and
echniques to investigate ecological and evolutionary questions.
ollowing Borrett et al., 2012, we call this science Network Ecology.

Fundamentally, network models map one or more relation-
hips among a set of objects or actors (Brandes and Erlebach,
005; Higashi and Burns, 1991; Newman, 2003; Wasserman and
aust, 1994). As such, they are a way of describing how objects
re arranged with respect to each other that accounts for mutual
ependencies and higher order characteristics in the resulting pat-
ern. Analytically, networks can be represented as mathematical
raphs (G) composed of a set of nodes or vertices (V) and edges
E) such that G = (V, E). Both vertices and edges can have multiple
haracteristics such as different types or weights. Further, edges
an be undirected (symmetric relations) or directed (asymmet-
ic relations), which is visually indicated by arrows. For example,
n a food web the vertices represent different species, functional
roups of species, or abiotic resource pools like detritus, and the
irected edges map the relationship “is eaten by” as represented
y arrows (directed edge) pointing from prey to predator. Vertices

n a food web might be weighted by biomass or organism body size
nd edges can be weighted by the amount of energy or biomass
ransferred.

Ecologists have used multiple types of network models. For
xample, ecologists interested in animal behavior and social
tructure have mapped the interactions among individuals of a
opulation (Croft et al., 2004; Finn et al., 2014; Foster et al., 2012;
ey et al., 2008). At the community level, Ings et al., 2009 identify

hree broad types of ecological networks: food webs, mutualistic
etworks, and host-parasitoid networks. This classification scheme
uilds upon the nine possible qualitative interaction types between
wo species identified by Burkholder, 1952 using a pairwise cross
f positive (+), neutral (0), and negative (−) effects of one species
n another. In this scheme, mutualism is indicated as (+,+). Ecosys-
em ecologists are interested in the same relationships, but infer
hose relationships from transactive network models that trace
he flow of a thermodynamically conserved tracer like energy or
utrients (nitrogen, phosphorus, etc.) through a given system (Fath
t al., 2007; Fath and Borrett, 2006). Such networks may represent
ood webs like in the community ecology networks (Cross et al.,
011; Martinez, 1991), but they may also map non-trophic pro-
esses such as death and excretion (Baird and Ulanowicz, 1989;
lff et al., 2009; van Oevelen et al., 2011) or biogeochemical pro-
esses (Christian et al., 1996; Reiners, 1986; Small et al., 2014;

hipple et al., 2014). More recently, ecologists have considered
ow to combine the variety of different ecological network per-
pectives to develop a broader understanding (Belgrano et al., 2005;
ontaine et al., 2011; Knight et al., 2005). From these examples, we
ight infer that network models and analytical tools have been

sed broadly in ecology. The question is how broadly?
Our objective in this study was to identify and characterize the

omain of Network Ecology. We addressed three primary ques-
ions. First, has the size of the domain changed over time? Second,
hat topics are ecologists addressing using the network approach,

nd third what is the nature of the scientific collaboration among
hese ecologists? The examples previously presented suggest that
here are a large number of topics being studied by a community
f scholars that is divided into distinct clusters. As publications
re a key product of the scientific process, we used a compu-

ational approach to infer from the publication record both the
rimary topics in the field and the structure of scientific collabora-
ion. This bibliographic approach draws topical information from
he content of publication records (titles, abstracts, keywords),
elling 293 (2014) 111–127

collaboration information from author listing, and prominence and
subfield information from citations. While our approach is different
from a traditional in-depth review of the literature, it serves as a
broad and high-level review of the field that provides a foundation
for future work.

2. Materials and methods

To address our research questions, we used a combination of
bibliographic techniques and network modeling. Similar network
approaches to bibliometric studies have been used successfully to
characterize the social structure of collaboration in many fields,
including sociology (Moody, 2004), physics, biomedical research,
and computer science (Newman, 2001a, 2001b), the study of
ecosystem services (Costanza and Kubiszewski, 2012), and the evo-
lution of collaboration in the US Long Term Ecological Research
network (Johnson et al., 2010). Topical modeling for science-studies
is similarly widespread, mapping detailed portraits of particular
fields (Börner, 2010; Evans and Foster, 2011; Moody and Light,
2006).

2.1. Bibliographic data: search and selection criteria

To identify the Network Ecology publications, we searched the
ISI Web of Science (WoS). We chose this bibliographic database
because it is a large general index for science that includes exten-
sive indexing of ecological science. Within the WoS, we limited
our search to the Science Citation Index Expanded and Social Sci-
ence Index Expanded citation databases between 1900 and 2012.
We excluded two conference proceedings databases because they
cover a smaller period of time (1990–present) and because the dis-
cipline of ecology values journal article publications more highly
than conference proceedings.

Network ecology lies at the intersection of (A) ecological sci-
ence and (B) network concepts, tools, and techniques. To identify
the broad domain of ecological science in the WoS, we searched
the union of two WoS research areas, Environmental Science & Ecol-
ogy and Evolutionary Biology, and the topic tag of ecology. This is
broadly inclusive of ecological science, but it is dependent on the
WoS research area classifications that are applied to whole jour-
nals. To find the network science within this ecological science,
we further searched the results for the union of three topic terms:
network, graph theory, and web. These terms are frequently used
within network science and can be regarded as signals for research
using network concepts or models. The use of web captured science
from spider webs to food webs, but it also included some spurious
references to topics like the World Wide Web.

Ecologists use the term network in a variety of ways. The
introductory examples illustrated the construction and analysis
of network models to characterize communities and ecosystems.
However, there are common uses of the term network that are
less related to the type of network science we sought. To address
this challenge, we excluded those records that our initial search
identified only due to their use of a few selected phrases. Specifi-
cally, we excluded records that were initially included only because
they entailed the phrases neural network or Bayesian belief network.
These phrases are common statistical techniques unrelated to the
broader network science that was our target. We also excluded
records identified solely on the terms monitoring network, trans-
portation network, and railway network because these phrases did
not typically recover research where network science was applied

to ecological problems.

We downloaded the final selection of records from WoS on May
13, 2013. We analyzed the resulting corpus with network analysis
tools in SAS, Pajek, and R.
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Table 1
Percent of ecology publications that include selected concepts and methods in ecology, including the 50 most important concepts in ecology as ranked by British ecologists
in 1986 (Cherrett, 1989).

2012 Rank Concept N % of 64,115 1986 Rank 2012 Rank Concept N % of 64,115 1986 Rank

1 Species 17,126 26.7% 32 Succession 595 0.9% 2
2 Model 16,853 26.3% 33 Plant herbivore 555 0.9% 21
3 System 12,707 19.8% 34 3/2 thinning law 551 0.9% 49
4 Population cycles 11,225 17.5% 19 35 Managed reserve 466 0.7% 28
5 Pattern 9158 14.3% 32 36 Density-dependent regulation 424 0.7% 15
6 Community 8456 13.2% 8 37 Environmental heterogeneity 394 0.6% 13
7 Ecosystem 6853 10.7% 1 38 Life history strategies 370 0.6% 9
8 Species diversity 6448 10.1% 14 39 Carrying capacity 363 0.6% 17
9 Evolution 5384 8.4% 40 coevolution 263 0.4% 24

10 Conservation of resources 4926 7.7% 4 41 Biome 252 0.4% 47
11 Energy flow 4897 7.6% 3 42 (Diversity or biodiversity) and

stability
248 0.4%

12 Materials cycling 3808 5.9% 7 43 Guild 240 0.4% 50
13 Landscape 3387 5.3% 44 Stochastic processes 208 0.3% 25
14 Indicator organisms 2698 4.2% 29 45 Island biogeography or

biogeographic theory
178 0.3% 22

15 Organism 2680 4.2% 46 Allometry 174 0.3%
16 Regression 2337 3.6% 47 Parasite-host interactions 170 0.3% 38
17 Ecological adaptation 2200 3.4% 12 48 Structural equation modeling 131 0.2%
18 Disease 2136 3.3% 49 Ecotype 105 0.2% 40
19 Competition 1939 3.0% 5 50 Species packing 87 0.1% 48
20 Natural disturbance 1661 2.6% 26 51 Keystone species 85 0.1% 46
21 Systems ecology 1634 2.5% 52 Allocation theory 78 0.1% 43
22 Trophic level 1415 2.2% 31 53 Optimal foraging 72 0.1% 37
23 Habitat restoration 1344 2.1% 27 54 Competition and species

exclusion
63 0.1% 30

24 Limiting factors 1220 1.9% 16 55 Territoriality 58 0.1% 42
25 Niche 1108 1.7% 6 56 Maximum sustainable yield 32 0.0% 18
26 Food webs 1017 1.6% 11 57 Climax 25 0.0% 41
27 Stable isotope 882 1.4% 58 Pyramid of numbers 14 0.0% 45
28 Predator-prey interactions 790 1.2% 59 R and K selection 11 0.0% 33
29 ANOVA or analysis of variance 758 1.2% 60 Intrinsic regulation 9 0.0% 44
30 Species-area relationships 751 1.2% 39 61 Socioecology 8 0.0% 36
31 Bioaccumulation in food chains 704 1.1% 23 62 Plant-animal coevolution 7 0.0% 34

63 Ecosystem fragility 5 0.0% 10

Note: Plural forms of concepts listed were also searched and are included in the counts. For concepts and methods that seemed overly specific, we selected to search a more
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eneral form (excluding italicised words). For example, the phrase energy flow is ve
re not ranked in the BES 1986 survey.

.2. Analysis

.2.1. Publication volume
Given the Network Ecology corpus, we characterized the volume

f the publications using several metrics. First, we examined how
he number of publications changed through time. Given that any
bserved change in publication numbers could be influenced by the
eneral publication inflation in ecology, we report the raw number
f network articles and show this as a percent of the annual num-
er of publications in ecology (WoS search for ecology as described
reviously without applying the search for network concepts). This
ormalization should remove the expected inflationary trend in
cology publication volume. Our second approach for characteriz-
ng the publication volume was to quantify three aspects of the
ublications in the corpus. We described the distribution of (1)
he WoS research area categories, (2) the journals in which the
apers are published, and (3) the article citation frequency within
he corpus.

To evaluate the relative importance of the Network Ecology
ublication volume in the most recent year analyzed (2012), we
ompared it to the relative frequency of selected concepts and
ools in the broader ecology corpus in WoS. We started with the
0 concepts that were identified by members of the British Eco-

ogical Society (BES) as important ecological concepts in 1986

Cherrett, 1989), generalizing when appropriate. We then added 13
dditional terms to capture newer topics of apparent importance
e.g. disease) and common analytical techniques (e.g. regression)
Table 1).
cific, so we also searched the term energy by itself. We added the 13 concepts that

2.2.2. Corpus validation
To evaluate the quality of the Network Ecology corpus discov-

ered, we determined if the corpus included recent publications
considered important by a community of experts. Participants were
surveyed online and asked to identify up to 5 Network Ecology
publications between 2007 and 2012 that they considered most
important (Supplementary Table A1). The survey was created using
Qualtrics software and distributed to the Ecological Society of
America’s Ecolog-L electronic mailing list, which currently boasts
more than 17,000 subscribers. We also sent the survey directly to a
targeted group of 56 known Network Ecology experts. A reminder
was sent after about a week and participants were encouraged to
further distribute the survey link. 59 respondents completed the
survey. The resulting convenience sample was intended to be a
positive control on our discovery of key Network Ecology publi-
cations. Accordingly, we classified the references identified by the
expert community into three categories: (1) not included in WoS,
(2) included in WoS but missing from the corpus, and finally (3)
included in the corpus.

2.2.3. Topics in Network Ecology
To identify the predominant topics in Network Ecology, we

built a network of papers linked by similar terms used in the
title, abstract, and keyword records. Edges are weighted by the

similarity of their term use, using the standard tf-idf formulation
(Börner et al., 2003), which discounts the similarity of common
terms and favors more rare terms. Edges were included in the topic
network when they indicated a minimum percentage of co-term
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imilarity. We constructed two versions of this co-term network;
ne composed of all papers in the corpus (35% minimum similar-
ty) and a second with 5-year moving windows (25% minimum
imilarity). By this construction, papers on similar topics can be
dentified using cluster detection techniques (Moody and Light,
006). We applied the Louvain community detection algorithm
Blondel et al., 2008) on a weighted graph as implemented in
AJEK. To visualize the results, we constructed two-dimensional
aps of the topic space by applying space-based layout routines

o the similarity network. These routines place papers that have
uch in common near each other. Since the resultant networks

re too dense to be visually informative, we overlaid contour maps
hat reflect the paper density in the topic space and labeled these

aps with the most frequent terms used in each cluster (Moody
nd Light, 2006 for this particular technique; Börner, 2010, for the
eneral approach). Labels are generated automatically using the
ost commonly used terms within each cluster.
In addition to identifying the clusters within these temporal

aves, we characterized the topic distribution using network com-
unity detection metrics. The first is the modularity score (Newman

nd Girvan, 2004), which captures the extent of clustering beyond
andom chance. A value of 1.0 indicates completely disconnected
lusters, while a value of 0 indicates no difference from random
ssignment. The second is the heterogeneity index, which captures
he distribution of topics across clusters. The heterogeneity index is
he probability that two papers chosen at random would fall within
he same cluster.

.2.4. Structure of scientific collaboration
To characterize the structure of scientific collaboration in Net-

ork Ecology, we constructed a co-authorship network in which
odes represent individual authors, and weighted edges connect
wo authors by the number of papers they have co-authored. Since
ublication records are often inconsistent in name use, we applied
light name-cleaning routine to combine names that are obviously
imilar (“Stuart J. Whipple” & “S.J. Whipple”) by matching on
ncommon last names and combinations of first and middle initials
see Moody, 2004). This is a deliberately conservative name correc-
ion routine, as the network costs of conflating common names
potentially creating a bridge between groups that are uncon-
ected) are typically worse than leaving them separate (which,
hile potentially increasing isolates, tends to preserve collabo-

ation groups). Once constructed, we identified the connectivity
tructure and examine diversity in collaboration groups. We again
pplied the Louvain community detection algorithm to identify col-
aboration clusters (default unit-weighted resolution parameter).

. Results
.1. Publication volume

The total number of Network Ecology articles discovered prior
o any exclusions based on selected phrases was 33,900 (Table 2).

able 2
umber of records returned using search terms for two dimensions of Network Ecolo
volutionary Biology and topic ecology) and network science (topics network, graph theory

Ecological Science

Null Envir
Scien

0 A

Network Science Null 0 1,00
Network X 666, 367 1
Web Y 110, 868 1
Graph theory Z 6198

X or Y or Z 769, 435 2

ote: Number at the intersection of the search terms are the set intersection (∩) of the ro
Fig. 1. (a) Number of Network Ecology publications per year, and (b) as percent of
total ecology publications discovered in our bibliographic search.

The majority (59%) of these records was discovered by the inter-
section of the WoS research area Environmental Science & Ecology
and topic term network, and 88% of the articles were discovered
by the intersection of the same WoS research area and the topic
terms network, graph theory, and web. In contrast, the intersection
of these three network topic terms with the WoS research area Evo-
lutionary Biology only found 8% of the records and only 4% of these
were unique. From this initial corpus, we excluded records based
on their use of phrases that entail the term network but do not nec-
essarily refer to research that applies network science to ecological
problems (# affected): neural (2444), Bayesian belief (259), monitor
(1263), railway (232), and transport network (244). Combined, these
exclusion phrases removed 3962 records or 12% of our initial sam-
ple. The remaining 29,513 records are the Network Ecology corpus
that we further analyzed.

The number of Network Ecology articles published each year
has grown rapidly (Fig. 1). The first ecology article discovered by

our methods appeared in 1936, by Griswold and Crowell on “The
Effects of Humidity on the Development of the Webbing Clothes
Moth”; however, this article seems to have been identified due to
the common name of the organism rather than its use of a formal

gy: Ecological science (WoS research areas Environmental Science & Ecology and
and web).

onmental
ce & Ecology

Evolutionary
Biology

Ecology

B C A or B A or B or C

2,490 139,706 106,825 1,075,483 1,144,552
9,987 1900 2751 21,005 22,534
0,567 846 2978 10,749 12,196

183 22 76 189 207
9,877 2688 5450 31,068 33,900

w and column terms; “or” in the table represents the set union (∪) of search terms.
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etwork approach. Instead, Gimingham’s (1961) investigation of
he network of variation in heath communities appears to be the
rst ecological publication identified by our search that explicitly
ses a network model. From these early publications, the number
f Network Ecology publications increased quickly to 3063 articles
n 2012.

The growth in Network Ecology research cannot be explained
y the general inflation in ecology publications. Relative to the
otal number of ecology publications, Network Ecology publica-
ions noticeably increased in the early 1960s (Fig. 1b). Between
990 and 1991 the percent of Network Ecology articles jumped by
lmost 1%. Following this jump, Network Ecology publications have
teadily increased from less than 1.5% in 1991 to over 5% in 2012.
his suggests that Network Ecology is a large and rapidly growing
rea of research.

The Network Ecology corpus includes work from a wide range
f WoS research areas and publication sources, which indicates
he diversity of research in this field (Fig. 2). Our corpus entailed
ublications pertaining to 122 unique, though non-exclusive WoS
esearch areas. The most common area was Environmental Science

Ecology, which is not surprising as this was one of our search
riteria. The next three most frequent research areas were Marine
Freshwater Biology, Engineering, and Water Resources. Other WoS

esearch areas represented in our corpus included disparate disci-
lines such as Geography, Urban Studies, and Public Administration.

Network Ecology publications in our corpus were distributed
cross nearly 1500 different publication outlets. These are primarily
ournals, though sometimes proceedings from conferences. Note
hat we did not correct for merging or changes in journal names
ver time. The journals Marine Ecology Progress Series and Water
esources Research contained the most Network Ecology papers,
ut each only contained 3–4% of the articles (Fig. 2b). Core ecology

ournals such as Ecology, Oikos, Oecologia, and Ecology Letters were
mong the top 20 most frequent sources. More general journals
uch as Science of the Total Environment and Proceedings of the
oyal Society B: Biological Sciences also made the top 20.

The frequency of citations to articles in the corpus (Fig. 3)
oughly follows the expected long-tail distribution of a Zipfs or
ower-law form; however, there were fewer citations at the low-
nd than is typical for such distributions (Zipf, 1949). The modal
alue is 0 (13.8%) while 51% of papers are cited 8 or more times,
5% more than 23 times, 10% more than 50 times, and the top 5%
eceived more than 78 citations. Only 3.3% of papers are cited 100
imes or more.

In 2012, the Network Ecology publications listed in WoS were
.1% of the total publications in ecological science as defined above
Fig. 1b). To put this proportion into perspective, we found the per-
entage of ecological publications in 2012 that contained other key
cological concepts including the 50 identified in the 1986 BES sur-
ey (Cherrett, 1989). The respective proportions range from 26.7%
or species and 26.3% for model to approximately 0% for terms like
sland biogeographic theory, pyramid of numbers, and 3/2 thinning
aw (Table 1). Some of the 1986 BES concepts continue to show rel-
vance in 2012. For example, 17.5% of the ecology publications in
012 included the term population, which represents a generalized
orm of the concept population cycle, which ranked fourth in the
ES survey. Ecosystem was the highest ranked concept on the BES
urvey and it appeared in 10.7% of the ecology articles published in
012. When compared to the relative frequency of these 63 terms,
ur definition of Network Ecology (which includes food webs) would
ave a rank of 15.
.2. Corpus validation

The online survey was completed by 59 people who identi-
ed 118 unique publications. Of these, 22 fell outside our target
elling 293 (2014) 111–127 115

time frame (2007–2012). Of the remaining 96, respondents showed
agreement on some of the most important papers as multiple
people identified the same papers. Out of the 96 publications iden-
tified, 13 (14%) were mentioned twice and 2 (2%) references were
mentioned three times (Table 3). Five of the references were not
included in the WoS database. Three of these missing references
were books or book chapters (Olesen et al., 2012; Whitehead, 2008;
Ulanowicz, 2009), which are not indexed by WoS, and the other
2 were published in journals not indexed by WoS (Rudnick et al.,
2012; Ulanowicz, 2011). The remaining 91 publications were found
in the WoS database, and thus were discoverable by our search.
However, only 55 of the 91 discoverable references (60%) identified
by the experts were represented within our Network Ecology cor-
pus. This indicates the challenge of discovering relevant Network
Ecology articles even when using a broad bibliographic search like
ours.

3.3. Topics in Network Ecology

3.3.1. Corpus topic network
To identify the topic structure of the Network Ecology corpus,

we constructed a similarity network based on co-word frequency.
Fig. 4 illustrates this process by walking out from a single paper to
its local neighborhood and the clusters they link to. Panel (a) plots
just the focal paper and its nearest neighbors. At an edge-threshold
of at least 35% co-term similarity, this paper is directly adjacent to
15 other papers, all generally on aspects of food webs and graz-
ers. Stepping out two more links as shown in panel (b), we reach
nearly 300 papers and find this small cluster embedded within a
wider field of 7 or 8 clusters, ranging in topics from algae in alpine
environments to the invasive consequences of crayfish. Since the
layout algorithm pulls similar papers near each other, these clus-
ters emerge as tight groups in the network diagram. Many papers
here are related in one way or another to water-based ecosystem
studies, and were we to step out even further we would likely find
those nested within a broader set of papers related to aquatic envi-
ronments. To ease recognition, we visualized clusters by fitting a
2-d kernel density surface and overlaying the resultant contours
shown in the example.

The complete topic network is comprised of 29,513 vertices rep-
resenting the papers in the corpus connected by 106,795 edges
indicating topic co-word similarity with a minimum of 35% similar-
ity. This topic network is comprised of several separate components
(disconnected subnetworks) of varying sizes. The largest compo-
nent contains 21,636 vertices (73% of total). The remaining 27% of
the papers appear in smaller components. The second largest com-
ponent contains 15 papers (0.05%). The majority of papers not in the
largest component (5908 or 20% of total) are isolated nodes (com-
ponents of size 1) with no edges connecting them to other papers.
This isolation indicates that either their topics do not appear related
to other papers in the corpus or that their WoS records did not con-
tain enough information to identify the similarity. We focused our
subsequent analysis on the giant component of this topic network,
which should reduce the potential bias of less relevant references
initially captured in our search.

Fig. 5 provides a contour diagram of the topic structure revealed
in the giant component of the topic network. The overall topology of
this topic network resembles a ring structure with multiple topic-
centered peaks joined at their peripheries to a neighboring subfield.
Starting at the north central region of the contour diagram, we
find a large number of clusters generally related to aquatic ecosys-
tems, rivers, and lakes. Moving in a clockwise direction, we then

encounter a small ridge of work related to soil, nematodes, food
web and communities that then links to work on predator–prey
food webs and communities. The southeast of this map is com-
posed of work on landscapes, habitats and conservation with a
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Fig. 2. Top 20 WoS research areas (a) and journal titles (b) for Network Ecology research.
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arge genetic cluster. The common theme of land-use bridges from
he southeast corner to the southwest which shows work on the
ntersection of human activity and ecosystems, particularly urban

lanning, policy & energy use. The far west of the diagram relinks
ith water system models through groundwater and distribution

opics. Descriptive network statistics of the five largest clusters are
ndicated in Table 4.
3.3.2. Temporal waves
To identify possible temporal variation of topics and topic

structure in Network Ecology, we constructed and analyzed topic

networks in temporal waves. We combined the years 1980 to 1989
due to the small number of papers. From thereon we constructed
waves in 5 year moving windows. Table 4 shows the 5 largest topic
clusters in each of the waves. Except in the years 1980 to 1989,



S.R. Borrett et al. / Ecological Modelling 293 (2014) 111–127 117

rticles

t
r
w
l
t
i
a
b
p
f
2
y

n

T
M

Fig. 3. Citation distribution for a

he modularity score as well as the heterogeneity index shows
emarkable stability across the waves. The modularity score as
ell as the heterogeneity index for the full corpus is substantially

arger than that for each individual wave, which signals that the
opics addressed did change across the waves as either new top-
cs emerged, old topics disappeared, or the terminology used to
ddress the same topic changed (our analysis cannot differentiate
etween these possibilities). Not only the size of the largest com-
onent, but also the average cluster size steadily increased from 38
or the years 1980 to 1989, to an average of 238 between 2005 and

009—a level that was subsequently almost reached within only 3
ears (2010–2012).

Our analysis reveals a strongly clustered pattern of the topic
etworks. The modularity score is over 0.82 in all waves since 1990,

able 3
ost frequently cited papers by experts asked to identify important Network Ecology pap

Authors Year Title

Mentioned Three Times
Dale and Fortin 2010 From graphs to spatial graph
Fontaine et al. 2011 The ecological and evolutiona

types of networks
Mentioned Two Times
Aizen et al. 2012 Specialization and rarity pred

from mutualist networks
Allesina and Pascual 2009 Googling food webs: can an e

importance for coextinctions
Baird et al. 2008 Nutrient dynamics in the Sylt

Wadden Sea: An ecological n
Bascompte and Jordano 2007 Plant-animal mutualistic netw

biodiversity
Berlow et al. 2009 Simple prediction of interacti
Chen et al. 2008 Network position of hosts in
Dunne and Williams 2009 Cascading extinctions and co
Nuismer et al. 2013 Coevolution and the architec
Otto et al. 2007 Allometric degree distributio
Ramirez 2012 Population persistence under

networks
Thébault and Fontaine 2010 Stability of ecological commu

mutualistic and trophic netw
Urban et al. 2009 Graph models of habitat mos
Wey et al. 2008 Social network analysis of an

the study of sociality
in the Network Ecology corpus.

and 0.93 for the full corpus. This strong clustering is expected in
a topical network for science studies, since most publications are
designed to speak carefully to a particular research problem. The
distribution of cluster sizes suggests that no single topic dominates
the field of Network Ecology; the largest clusters typically account
for between 5% and 7% of the topics in a wave. The topic network
for the full corpus is even more dispersed with the largest clus-
ters entailing only about 4% of the papers. The network for the
full corpus allows us to identify more specialized topics that might
not appear in any of the smaller waves as there would be too few

papers. The more dispersed nature of the full corpus is reflected
in the high heterogeneity scores, typically topping out over 0.95
in later years. Since all of these papers have a foundational com-
monality in Network Ecology, this suggests an extremely topically

ers published between 2007 and 2012.

Journal
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ry implications of merging different Ecol. Lett.

ict nonrandom loss of interactions Science
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?

PLoS Comp. Biol.
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orks: The architecture of Ann. Rev. Ecol. Evol. Syst.

on strengths in complex food webs Proc. Nat. Acad. Sci. USA
food webs and their parasite diversity Oikos
mmunity collapse in model food webs Philos. Trans. R. Soc., Lond. B
ture of mutualistic networks Evolution
ns facilitate food-web stability Nature
advection-diffusion in river J. Math. Biol.

nities and the architecture of
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ig. 4. Topic network construction example: (a) the one-step local neighborhood a
lusters that appear 3 steps from the focal paper. A contour map overlay created wit
abeled with the most common terms. (For interpretation of the references to color

iverse body of work employing network concepts, tools, and tech-
iques.

While the sheer diversity of the topical networks makes iden-
ifying temporal trends difficult, we did find some patterns of

nterest. We see similarities across the largest topics in each year as
hemes related to water and aquatic systems, predator-prey mod-
ls, conservation, and network methodology reoccurs. In particular,
opics related to predator-prey models reappear throughout most
the exemplar paper Burgmer et al., 2010 which is colored blue, and (b) the topic
d kernel density surface algorithm also shows the paper clusters in (b). Clusters are
s figure legend, the reader is referred to the web version of this article.)

waves. Furthermore, topics related to water and aquatic systems
(lake, fish, phytoplankton) seem to have become more central
between 1995 and 1999 and gained further relevance thereafter
(stream, river, water, rain). Between 2000 and 2004 conservation

and the influence of human living and production on the environ-
ment become apparent (reserve, pollution, air, concentration, road,
emission, and eventually also firm, innovation) which might be due
to a more general interest in sustainable living and environmental
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ig. 5. Contour plot of the topic network giant component. Regions are labeled with t

rotection. Between 2010 and 2012, themes related to urban living
urban, city) and the topic temperature appears, which could be due
o an increased interest in climate change and the application of
cological network analysis to built environments.

.4. Scientific collaboration

.4.1. Overview
To map the structure of scientific collaboration in Network Ecol-

gy, we constructed a co-authorship network from the publications
n our corpus. Whenever two scientists collaborate on a paper, it
reates a connection that extends through all co-authors and thus
ollaboration networks provide a useful model for communities of
cience. In Network Ecology collaboration is common (Fig. 6). Most
f our papers contain multiple authors and the median paper has
authors (inter-quartile range (IQR) 2–4), though there is a fairly

arge tail (with the largest paper having 82 authors). The incidence
f collaboration has been growing over time, from an average of 2
o-authors per paper in the 1980s to over 4 currently.

Concatenating across all publications we built the full collabo-
ation network. In this network, the vertices represent authors that
re connected by an edge if they have co-authored a paper in the
orpus (co-authorships among these authors on papers other than
hose in our corpus are not considered). Edges are weighted to indi-
ate the number of papers co-authored. The corpus contains 69,564
niquely named authors.

Fig. 7 provides an image of the full collaboration network using
he same contour overlay strategy as previously described. The
argest connected component contains 46% of these authors. Only
695 (3.9%) of the authors appear as isolated nodes having not co-
uthored a publication. The component size distribution is skewed,
uch that the next largest component has 75 people. The diameter
f the large component is 27 steps, while the average path length is
.7. Within the largest component, the largest bi-connected com-

onent contains 58% of authors (19,015), and 85% of this set are
embers of at least a 3-core—sharing at least three neighbors in

ommon with every other member of the set. It is possible for
ost of the members of the largest connected component to reach
st common terms found in the clusters and font size corresponds to term frequency.

each other via multiple collaboration paths. Thus, at a high-level of
analysis, these results show a well-connected research community

3.4.2. Clustering
Despite the broad connectivity within the community, there are

a large number of distinct clusters in the largest co-authorship
component (Fig. 8). The Louvain community detection algorithm
(Blondel et al., 2008) identified 149 clusters ranging in size from 6
to 1618. The small clusters (<25 or so) are generally fringe cases that
are only weakly connected to the rest; looking at only those with
larger sized communities the median is 190 people (IQR: 87–354).
The clusters congregate around three distinct larger communities,
evident as peaks in the overall sociogram (Fig. 7).

To better characterize the largest co-authorship clusters, we
identified the three authors with the highest betweenness central-
ity within the cluster (Supplementary Table A2). At this scale of
analysis, these clusters represent groups of authors who generally
work together on similar scientific problems or topics. Embedded
within the clusters are also traces of collaborative working groups
that may be based on a single primary investigator or a small group
of collaborative principles. For example, G. Woodward, J. Memmott
and N. Martinez have the highest betweenness centrality in cluster
13, which contains 1618 authors (about 2.5% of all authors, 5% of the
largest component). These authors work on a variety of topics, but
they appear to also have a common focus on community networks
like food webs and pollination networks (Woodward et al., 2005,
2008; Martinez, 1991; Williams and Martinez, 2000; Memmott,
2009). Furthermore, several authors within this cluster have col-
laborated on recent synthetic publications (Brose, 2006; Ings et al.,
2009).

The modularity score for the overall clustering of the co-
authorship network is 0.92, suggesting relatively distinct clusters.
Just over 94% of co-authorship occurs within clusters, and 80% of
authors have only within-cluster ties. The remaining 20% of authors

create the links that pull together the entire network. Within cluster
density averages 0.09 (IQR: 0.02–0.12), but since density is strongly
affected by cluster size average degree is perhaps more telling.
On average, authors collaborate with 9.2 other authors in their
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Fig. 6. Frequency distribution of the number of co-authors of Network Ecology articles and the temporal trend in collaboration (inset).

Fig. 7. Collaboration by scientists publishing in Network Ecology as indicted by co-authorship (network node size and color proportional to degree, contour lines capture
overall density of the academic field).
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lusters (Median: 7.8l; IQR: 6.3–9.6). The structure within clusters
s composed of overlapping cliques formed by sharing authorship
n papers. This ranges from very fragile structures where a few key
odes chain across multiple large papers to very robust groups that
ollaborate across many papers.

.4.3. Ego networks
We can further highlight features of the Network Ecology col-

aborative structure by focusing on selected individual authors.
ig. 9 shows the ego co-authorship networks for Bernard C. Pat-
en, Robert E. Ulanowicz, Stephen R. Carpenter, and Derek C. G.

uir. These ego networks show the co-author structure from the
erspective of a specific individual. Here, we have also included
he co-authorships that most directly link Patten and Ulanowicz
o visualize the hypothesized historical separation between their
esearch programs (see Scharler and Fath, 2009). Within the Net-
ork Ecology corpus, Patten has 62 direct co-authors, Ulanowicz
as 67, and Carpenter and Muir have 128 and 226, respectively.

Each author’s ego network tells different stories. Unpacking
hose highlights the variety of factors that can influence the struc-
ure of scientific collaborations. For example, Patten’s ego net
isplays a couple of different working groups. The first is comprised
f his former Ph.D. students (e.g., S. J. Whipple, S. R. Borrett, S. R.
chramski) and the Systems Ecology and Engineering colleagues at
he University of Georgia (e.g., D. K. Gattie and C. Kazanci). Another
ork group is comprised of S. E. Jørgensen, and M. Straskraba. Brian
. Fath appears to be loosely part of both of these groups; he was

lso a Ph.D. student with Patten. Another cluster of co-authorships
ppears in the lower region of the plot and includes P. G. Verity, M.
. Frisher, and J. C. Nejstgaard. The publications that link these co-
uthors were a result of an NSF Biocomplexity award (Nejstgaard
l highlights distinct clusters in the co-authorship network and indicates the cluster

et al., 2006; Whipple et al., 2007). There is another cloud of co-
authors plotted between Patten and Ulanowicz that is a result of
a synthetic publication calling for improvement in food web con-
struction co-authored by multiple investigators working on food
webs at that time (Cohen et al., 1993).

4. Discussion

Considered together our results highlight three key features of
Network Ecology. First, Network Ecology is a large and rapidly
growing area of ecology. Related papers are published in a wide
variety of journals, touch on a breadth of topics, and co-occur in a
broad set of research areas defined in WoS. Second, despite visi-
ble temporal continuity, the substantial research topics addressed
within Network Ecology are manifold and have varied over time as
shown by prominent co-occurrences of words across papers. Third,
collaboration as reflected in co-authorship among researchers sug-
gests a highly collaborative science, but one that appears deeply
fragmented into distinct clusters of collaborators. We next consider
the forces that may have driven the increase in Network Ecol-
ogy, suggest possible ways to overcome the domain fragmentation,
identify the limitations of this study with possible next research
steps, and highlight emerging frontiers of Network Ecology.

4.1. Forces shaping Network Ecology

4.1.1. Growth

Our results show Network Ecology to be a broad and rapidly

growing area of research. While this change was not evident in a
recent survey of trends in ecological research (Carmel et al., 2013),
our finding is consistent with previous research both in ecology
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Fig. 9. One-step ego networks of (a) Bernard C. Patten

nd in other areas of network science. Ings et al., 2009 used a
ore constrained survey of papers published in 12 selected jour-

als to show the rapid increase of networks in ecology between
970 and 2007. For 2007, they found that approximately 12% of the
apers published in these journals were related to food webs, host-
arasitod, or mutualist networks. This rapid expansion in ecology
irrors developments in other fields. For example while network
odeling and analysis has a long history in the social sciences

Wasserman and Faust, 1994; Freeman, 2004), Borgatti and Foster,

003 document a similar growth pattern in social network publi-
ations between 1970 and 2000. We speculate that at least three
actors may have contributed to the observed growth in Network
cology.
R.E. Ulanowicz, (b) S.R. Carpenter and (c) D.C.G. Muir.

The first factor is the positive feedback from a critical mass of
theoretical developments, applications, and tools by network pio-
neers across many fields (e.g., Wasserman and Faust, 1994; Fath
and Patten, 1999; Newman et al., 2006). These investigators solved
essential methodological problems and successfully demonstrated
their substantial utility. In ecology, examples of this are the early
theoretical analysis of binary food webs (Pimm, 1982), analysis of
flows and cycling in ecosystems (Finn, 1976; Baird and Ulanowicz,
1989), and the development of the Ecopath software for model con-

struction and its inclusion of network analysis tools (Christensen
and Pauly, 1992). Beyond ecology, Watts and Strogatz’s (1998)
paper on the small-world phenomenon is often cited as a tipping
point in the development of network science. This publication was
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Table 4
Topic cluster distributions and descriptions of the largest 5 topic clusters in the
whole network and in the six temporal waves.

Rank Proportion Most common terms

Total: P = 21,636, C = 86, M = 0.927, TH = 0.98, Mean cluster size (S.D.): 251 (185)
1 0.038 Conservation, area, forest, species
2 0.034 Lake, fish, web, concentration
3 0.033 Phytoplankton, web, community, rate
4 0.029 Delta, isotope, stable, carbon
5 0.029 Predator, prey, web, community

2010–2012: P = 8606, C = 37, M = 0.828, TH = 0.96, Mean cluster size (S.D.):
232 (142)
1 0.061 Conservation, habitat, landscape, area
2 0.054 Urban, city, network, system
3 0.054 Lake, community, temperature, web
4 0.049 Stream, river, water, flow
5 0.047 Species, interaction, plant, specie

2005–2009: P = 9764,C = 41, M = 0.824, TH = 0.96, Mean cluster size (S.D.):
238 (165)
1 0.066 Network, development, innovation, paper
2 0.059 Conservation, area, forest, species
3 0.056 Stream, river, water, model
4 0.051 Water, system, model, result
5 0.050 Predator, prey, interaction, plant

2000–2004: P = 4828, C = 31, M = 0.831, TH = 0.96, Mean cluster size (S.D.):
156 (98)
1 0.078 Reserve, conservation, specie, area
2 0.078 Predator, prey, community, specie
3 0.060 Innovation, regional, network, firm
4 0.056 Air, concentration, road, emission
5 0.053 Water, river, model, rainfall

1995–1999: P = 2665, C = 31, M = 0.838, TH = 0.95, Mean cluster size (S.D.):
86 (68))
1 0.093 Network, development, firm, paper
2 0.092 Production, phytoplankton, bacterial, rate
3 0.069 Lake, fish, web, concentration
4 0.065 Conservation, area, forest, landscape
5 0.061 Species, predator, interaction, prey

1990–1994: P = 1124,C = 29, M = 0.851, TH = 0.95, Mean cluster size (S.D.):
39 (25)
1 0.075 Deposition, concentration, precipitation, urban
2 0.070 Web, specie, species, ecosystem
3 0.070 Region, development, information, network
4 0.061 Level, biomass, increase, production
5 0.061 Fish, isotope, specie, winter

1980–1989: P = 418, C = 11, M = 0.642, TH = 0.90, Mean cluster size (S.D.):
38 (15)
1 0.153 Spider, web, prey, araneae
2 0.141 Distribution, model, national, water
3 0.108 Network, fracture, measure, simulation
4 0.108 Analysis, plan, relationship, network
5 0.100 Web, dynamic, pattern, landscape

P = papers in largest component, C = number of topic clusters, M = modularity score,
TH = Topic Heterogeneity {= 1 − sum(pk

2)}.
Note: A lower edge threshold is used for the individual waves (0.25) than for the
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ity continues to grow, new training opportunities that explicitly
otal corpus (0.35) to counterbalance the lower power in judging paper similarity
ased on co-word frequency.

ollowed closely by Barabási and Albert’s (1999) work examining
he distribution of degree centralities in network models of several
ypes of complex systems, and the calculation of the diameter of
he World Wide Web (Albert et al., 1999). Papers like these gen-
rated widespread interest that led to both new mathematics and
cience. This has surely contributed to the rise of network science
n general.

A second critical factor is technological development. Since net-
ork models are data intensive, the rise of Network Ecology is
artly due to our increasing ability to collect, store, and access data

f all types (Proulx et al., 2005; Michener and Jones, 2012; Stafford,
993). For example, the methodological innovation of using sta-
le isotopes to estimate diet and trophic position in the food web
elling 293 (2014) 111–127 123

(Peterson et al., 1985; Peterson and Fry, 1987) has enabled an
increase in the development and quantification of food web data.
More recent efforts for open access ecological data repositories
(Reichman et al., 2011) and emphases on synthesis (Carpenter et al.,
2009) further drive this work. Barabási, 2012 argued that network
thinking is growing in part because of its ability to synthesize high
volume data in ways that aid studying complex systems.

Third, ecology is fundamentally a relational science. Its cen-
tral questions are about the relationships among species and their
physical, chemical, and social environments, and how these ulti-
mately create and constrain the empirically observed patterns of
species distribution, abundance, and evolution. Because network
concepts and analytical tools are broadly useful to address these
relational questions, they have also become important within ecol-
ogy.

The observed ∼1% jump in Network Ecology publications
between 1990 and 1991 is an interesting feature of our results that
we do not want to overlook; however, we do not have a satisfactory
explanation for it. To our knowledge, this time frame does not align
with any obviously influential events in ecological science, nor with
a jump in social network publications (Borgatti and Foster, 2003).
A search of the publication records in the immediately proceeding
years failed to identify uniquely influential papers. The cause of this
jump remains a mystery.

4.1.2. Fragmentation
Despite the generally well-connected cores of both the topic and

co-authorship networks, both networks exhibited a high degree of
clustering. This suggests that the Network Ecology domain is deeply
fragmented. The clustering in both networks is probably due in
part to scientists with common topic interests naturally collaborat-
ing, but it is also likely reinforced by proximity, training programs,
and funding. Hints of these drivers are in the previously discussed
ego network of Bernard Patten. We also wonder if a second fac-
tor leading to the current clustering structure is the existence of
multiple, mostly independent events in which network ideas and
tools were imported into ecology; however, this requires further
investigation.

While this fragmentation may have some positive consequences
such as allowing the incubation of local ideas or the focus on partic-
ular problems, it has the potential to inhibit the spread of generally
useful concepts and methodological innovations across the clus-
ters. It can also lead to the development of competing jargon that
inhibits communication. For example, Jacoby et al., 2012 used the
term edge density for the network statistic that food web ecologists
have routinely called connectance (Martinez, 1991; Dunne et al.,
2002).

To reduce this fragmentation, several actions are possible.
First, one challenge revealed by our work is that of identi-
fying relevant science and scientists because related works in
different Network Ecology topic areas or collaboration clus-
ters may not be obvious. Adoption of a common keyword like
Network Ecology might increase the discoverability of related
work. Second, workshop and symposium organizers might con-
sciously include investigators from different clusters. We expect
that organizations like the National Center for Ecological Anal-
ysis and Synthesis, the National Institute for Mathematical and
Biological Synthesis, the National Socio-Environmental Synthesis
Center, and the National Evolutionary Synthesis actively reduce
this type of fragmentation in ecology; however, this effort could
be enhanced with additional knowledge of the existing cliques.
Third, given that the interest in Network Ecology and its util-
bridge across topic and current co-authorship clusters might
be useful. This could include training workshops at confer-
ences.



1 l Mod

4

i
a

r
p
e
o
G
t
p
s
i
c
b
a

i
e
b
d
a
a
b
M
c
p
i
i
t
a
i
A
t
t
E

o
e
t
h
o
(
g
o
A
c
i
s
l
T
k
i
E
f
p
n
i
t
L
w
E
a
j

24 S.R. Borrett et al. / Ecologica

.2. Limitations and next steps

There are several limitations of our study that may adversely
nfluence our findings. We next discuss the four primary limitations
nd conclude with possible next steps in this research.

First, the bibliographic corpus has some limitations due to
estricting our search to a subset of the ISI WoS. Our search missed
ublications, topics, and scientific collaborations that might have
merged if we had expanded our search to conference proceedings
r an additional database such as BIOSIS, MEDLINE, Scopus, or
oogle Scholar. We selected WoS because of its strong and long-

erm coverage of ecological journals, where ecologists tend to
ublish their high quality work. That said, our survey of experts
uggested that several recent books and book chapters not included
n WoS were highly influential in Network Ecology. While the spe-
ific results would certainly be different, we do not expect that the
road trends identified would be substantively different if we used
different or combined set of databases.

A second limitation of the WoS database is that not all records
n the database are complete. We can illustrate this issue with an
xample of a paper we would have expected to be in our corpus
ut that was not. Baird and Ulanowicz, 1989 studied the seasonal
ynamics of carbon flux in the Chesapeake Bay by building and
nalyzing network models to understand the ecosystem, and the
rticle has been an influential Network Ecology paper as evidenced
y its 409 cites as of this writing. It was published in Ecological
onographs, a journal that was included within our subject area

lassifications. However, our Network Ecology search missed this
aper because the information provided by the WoS record is miss-

ng the author keywords and abstract. This renders the WoS record
nvisible to our topic term search. Inspection of the paper shows
hat both our search terms network and web appear in the abstract
nd keywords of the paper, so if this information had been included
n the WoS database our search would have discovered this paper.
s older WoS records tend to be less complete (personal observa-

ion), this issue likely introduced a systematic bias to our sampling
hat suggests that our corpus underrepresents the earlier Network
cology research.

A third limitation of our bibliographic corpus relates directly to
ur use of the WoS subject classifications as a means of identifying
cology publications. These research area classifications are applied
o the whole journal, rather than being specific to an article. This
elps explain why our corpus missed 36 (40%) of the Network Ecol-
gy articles between 2007 and 2012 identified by our experts. 21
58%) of the articles missed were published in journals with a more
eneral scope as indicted by their WoS research area classification
f Science & Technology—Other Topics. For example, the articles by
llesina and Levine, 2011 and Allesina and Tang, 2012 are both
learly about Network Ecology. However, the first was published
n the Proceedings of the National Academy of Sciences and the
econd was published in the journal Nature, both of which WoS
abeled with a research area of Science & Technology—Other Topics.
hus, since the term ecology was not found in the title, abstract, or
eywords, these papers were not identified as ecological articles
n our search. This issue might also bias against selected Network
cology authors who tend to publish their work in journals with dif-
erent research area classifications. For example, of the 40 articles
ublished by R.E. Ulanowicz through 2012 indexed by WoS with our
etwork keywords, only 22 (55%) of these articles were published

n a journal labeled as Environmental Science & Ecology. 9 or 23% of
hese publications were published in journals labeled by WoS as
ife Sciences Biomedical Other Topics. This might also help explain

hy there were only 87 papers in our corpus that mentioned the

copath software despite its expected importance; Ecopath papers
re often published in fisheries, marine science, and oceanography
ournals. This limitation is inherent in any restricted set of journal
elling 293 (2014) 111–127

used for reviews like this (see Carmel et al., 2013 and Ings et al.,
2009). More importantly, it suggests that our corpus provides a
conservative estimate of the magnitude of Network Ecology.

A fourth challenge to our corpus works in an opposing
direction—possibly inflating the volume of our results. In contrast to
the Ings et al., 2009 study, we deliberately used a set of broad search
terms to identify ecological science and the use of network con-
cepts, techniques and tools within it. Despite the exclusion criteria
we subsequently applied, our final corpus still included papers that
did not strictly pertain to the area of Network Ecology we sought.
For example, as described in section 3.1 the earliest record in our
corpus is Griswold and Crowell, 1936, which unfortunately does
not report the kind of network science we tried to capture. Fur-
ther, despite our term exclusions it is clear that some papers were
included in our corpus due to their use of network as referring to
sensor and research networks in particular (e.g., Long Term Ecolog-
ical Research Network, National Ecological Observatory Network).
Although this will have inflated our corpus to an unknown degree,
this problem is difficult to avoid and we decided to err on the
side of being more inclusive. Further, we focused our topic and co-
authorship analysis on the largest network components to reduce
the effect of this bias on our results.

We see two specific next steps to extend this research. First,
while we have conducted a first analysis of the temporal dynam-
ics of the topics in Network Ecology, we have not considered the
temporal dynamics of the co-authorship structure. The current
co-authorship network is cumulative, which may obfuscate the
changing impact of generations of scientist and/or particular indi-
viduals. Further, more established scientists will tend to be more
central because they have had more time to publish and develop
collaborations. Second, we could extend this analysis by developing
a bibliographic coupling graph for the corpus. This network would
provide a way to identify the commonality among papers suggested
by their joint citations as well as identify influential publications
along the lines of a traditional citation analysis.

4.3. Frontiers of Network Ecology

The future of Network Ecology appears bright. This is suggested
by the rapid and sustained increase in Network Ecology publica-
tions (Fig. 1). While this pace of increase cannot be sustainable, we
do not expect the forces driving the rise of network ecology to dis-
sipate soon. In fact, we see at least four frontiers at which Network
Ecology might further develop.

One frontier is the application of network concepts, techniques
and tools to new areas within the broad field of ecology. For
example, Cohen et al., 2012 proposed the development of physio-
logical regulatory networks to investigate organismal ecology and
evolution. Similarly, several scientists have begun to use ecosys-
tem network analysis to investigate the sustainability of urban
metabolisms (Chen and Chen, 2012; Li et al., 2012; Zhang et al.,
2010), industrial networks (Layton et al., 2012), and trade networks
(Kharrazi et al., 2013).

A second frontier is the application of existing Network Ecology
to address applied questions. Memmott, 2009 illustrates many pos-
sible directions in this regard. For example, Network Ecology can
be used to assess the effectiveness of management and restora-
tion or the potential impact of climate change. Accordingly, Hines
et al., 2013 and Hines and Borrett, 2014 used a comparative network
approach to predict the potential impact of sea level rise on the sed-
imentary nitrogen cycle of the Cape Fear River estuary. Likewise,
Small et al., 2014 applied ecological network analysis to investigate

the linked N cycling among the Laurentian Great Lakes.

A third frontier emerges from attempts to apply Network Ecol-
ogy more broadly. To do this effectively, Network Ecology will need
to continue to develop methods for model construction (Fath et al.,
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007) and overcome sampling and data limitations (Polis, 1991).
inear inverse modeling is one tool to assist with this (van Oevelen
t al., 2010; Vézina and Pace, 1994). Network Ecology will also
eed to improve its ability to quantify statistical uncertainty in net-
ork models and related implications for analysis and conclusions

Borrett and Osidele, 2007; Kaufman and Borrett, 2010; Kones et al.,
009).

A fourth frontier is the combination of multiple network per-
pectives and models. Fontaine et al., 2011 note that each network
odel provides a particular and necessarily limited perspective

n the ecological systems being studied. Combining multiple per-
pectives has already led to new ecological insights. For example,
night et al., 2005 combined both a food web network and a
ollination network to show how a predatory fish can facilitate
he fitness of nearby terrestrial plants. Likewise, Malcom, 2011
pplied an individual based genotype model to a network pop-
lation model to show that the size and connectance pattern of
enetic networks can change the trait heritability in the population
nd the population recovery from disturbance. In doing so, Malcom
lso illustrates the opportunity for crossing scales of analysis with
etwork approaches.

These frontiers are only illustrative of the many possible direc-
ions that Network Ecology can grow into. Its future will be further
nabled by developments in network science more generally. For
xample, statisticians are beginning to tackle the quantitative chal-
enges of making inferences with networks (e.g., Kolaczyk, 2009)
nd the challenge to visualize the structural complexity that net-
ork approaches can capture (e.g., Moody et al., 2005; Lima, 2011).

.4. Summary

Network Ecology is comprised of scientists using network mod-
ls to investigate ecological systems at many different hierarchical
evels of organization. Network Ecology is defined by the use of a
eneral model type—a network. Our analysis suggests that this is
large and rapidly growing subfield of ecology. This is reflected in

he number of publications, the array of topics, and large number of
uthors identified in our Network Ecology corpus. These scientists
roadly use network concepts, techniques, and tools to (1) char-
cterize the system organization (Croft et al., 2004; Borrett et al.,
007; Borrett, 2013; Ulanowicz, 1983), (2) investigate the conse-
uences of the network organization (Allesina and Pascual, 2009;
orrett et al., 2006, 2010; Dunne et al., 2002), and (3) identify the
rocesses or mechanisms that might generate the observed pat-
erns (Allesina et al., 2008; Guimarães et al., 2007; Ulanowicz, 1986;

illiams and Martinez, 2000). Both its topic and co-authorship
tructure indicates that the field of Network Ecology is divided
nto clusters, which may inhibit the spread of innovative ideas
nd tools between the groups. We recommend several actions that
ight reduce this fragmentation and increase the discoverability of

elated work, including the use network ecology as a keyword. Net-
ork Ecology is a research area with a long history and bright future

n part because as Lima, 2011 said “networks are everywhere”.
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